Skip to main content

Section 2.3 Power Functions

When the power of love overcomes the love of power the world will know peace. — Jimi Hendrix, American rock guitarist, singer, and songwriter, 1942 – 1970

Question: How many different 5–digit numbers can you write by using only digits 1 and 2?

What if you use the digits 1, 2, and 3?

Solution

Thie question is equivalent to the following problem: In how many different ways can we place digits 1 and 2 in five boxes arranged in a row:

\begin{equation*} \begin{array}{|c|c|c|c|c|} \hline \hspace{0.5cm}\amp \hspace{0.5cm}\amp \hspace{0.5cm}\amp \hspace{0.5cm}\amp \hspace{0.5cm}\\ \hline \end{array} \end{equation*}

Observe that there are two choices for each box: the digit 1 or the digit 2:

\begin{equation*} \begin{array}{|c|c|c|c|c|} \hline 2 \text{ choices} \amp 2 \text{ choices} \amp 2 \text{ choices} \amp 2 \text{ choices} \amp 2 \text{ choices} \\ \hline \end{array} \end{equation*}

It follows that the number of choices is \(2\cdot 2\cdot 2\cdot 2\cdot 2=2^5=32\text{.}\)

If we can use three digits, 1,2, and 3, then for each box we have three choices. It follows that the number of choices is \(3\cdot 3\cdot 3\cdot 3\cdot 3=3^5=243\text{.}\)

Positive Integer Exponent: If \(x\) is a real number and \(m\) is a positive integer than

\begin{equation*} x^m=\underbrace{x\cdot x\cdot \ldots \cdot x}_{m- \text{times}} \end{equation*}

Power Function: If \(m\) is a positive integer then the function

\begin{equation*} f(x)=x^m \end{equation*}

is called a power function.

For graphs of a few power functions, see Figure 2.31.

Figure 2.31. Four power functions.

Facts About Power Functions: Let a power function

\begin{equation*} f(x)=x^m, m\in \mathbb{N} \end{equation*}

be given.

  1. What is the domain of the function \(f\text{?}\)

    Solution

    The domain of the function \(f\) is the set of all real numbers \(\mathbb{R}\text{.}\)

  2. What is the range of the function \(f\text{?}\)

    Solution

    Note that if \(m\) is an odd positive integer then the range of the function \(f\) is the set of all real numbers \(\mathbb{R}\text{.}\)

    If \(m\) is an even positive integer that the range of the function \(f\) is the set of all non–negative real numbers \([0,\infty)\text{.}\)

  3. Find the zeros of the function \(f\text{,}\) i.e. solve the equation \(f(x)=0\text{.}\)

    Solution

    Since \(m\) is a positive real number then \(f(x)=x^m=0 \Leftrightarrow x=0\text{.}\)

  4. Determine the intervals of increase and decrease for the function \(f\text{.}\)

    Solution

    We read from the graphs above:

    If \(m\) is an odd positive integer then \(f\) is an increasing function on its domain.

    If \(m\) is an even positive integer than \(f\) decreases on the interval \((-\infty,0]\) and increases on the interval \([0,\infty)\text{.}\)

  5. Summary:

    \begin{equation*} \begin{array}{l|l|l} f(x)=x^m, m\in\mathbb{N}\amp m \text{ even}\amp m \text { odd}\\ \hline \text{Domain}\amp \mathbb{R}\amp \mathbb{R}\\ \hline \text{Range} \amp [0,\infty)\amp \mathbb{R}\\ \hline f(x)=0 \amp x=0\amp x=0\\ \hline \text{Increasing}\amp [0,\infty) \amp\mathbb{R}\\ \hline \text{Decreasing}\amp (-\infty,0]\amp \\ \hline \text{Odd or even}\amp \text{even}\amp \text{odd}\\ \end{array} \end{equation*}

Properties of Positive Integers Exponents: Let \(x\) and \(y\) be real numbers and let \(m\) and \(n\) be positive integers. Then

\begin{equation*} x^m\cdot x^n=x^{m+n} \end{equation*}
\begin{equation*} (x^m)^n=x^{mn} \end{equation*}
\begin{equation*} x^m\cdot y^m=(xy)^m. \end{equation*}
Example 2.3.1. Properties.

Evaluate:

  1. \(\displaystyle 3^4\cdot 3^3-(3^3)^2\)

  2. \(\displaystyle (3^3+6^3)^2- 2\cdot 18^3\)

  3. \((x^n+y^n)^2- 2\cdot (xy)^n\text{,}\) where \(n\in \mathbb{N}\text{.}\)

Solution
  1. We use the fact that \((a+b)^2=a^2+2ab+b^2\) and the above listed properties of positive integers exponents:

    \(3^4\cdot 3^3-(3^3)^2= 3^{4+3}-3^{3\cdot 2}=3^7-3^6=3\cdot3^6-3^6=(3-1)\cdot 3^6=2\cdot 3^6.\)

  2. \((3^3+6^3)^2- 2\cdot 18^3=(3^3)^2+2\cdot 3^3\cdot 6^3+(6^3)^2-2\cdot 18^3\)

    \(=3^6+2\cdot (3\cdot 6)^3+6^6-2\cdot 18^3=3^6+2\cdot 18^3+6^6-2\cdot 18^3=3^6+6^6.\)

  3. \(\displaystyle (x^n+y^n)^2- 2\cdot (xy)^n=(x^n)^2+2\cdot x^n\cdot y^n+(y^n)^2-2\cdot x^n\cdot y^n=x^{2n}+y^{2n}.\)

Detective J: Evaluate:

  1. \(\displaystyle \displaystyle \frac{3^5}{3^2}=\frac{3\cdot 3\cdot 3\cdot 3\cdot 3}{3\cdot 3}=3^3=3^{5-2}\)

  2. \(\displaystyle \displaystyle \frac{3^2}{3^5}=\frac{3\cdot 3}{3\cdot 3\cdot 3\cdot 3\cdot 3}=\frac{1}{3^3}=\frac{1}{3^{2-5}}\)

  3. \(\displaystyle \displaystyle \frac{3^5}{3^5}=\frac{3\cdot 3\cdot 3\cdot 3\cdot 3}{3\cdot 3\cdot 3\cdot 3\cdot 3}=1\)

  4. Let \(x\not=0\) and \(m,n\in \mathbb{N}\text{.}\) Then

    \begin{equation*} \frac{x^m}{x^n}=\left\{ \begin{array}{lll} x^{m-n}\amp \text{ if }\amp m\gt n\\ {\displaystyle \frac{1}{x^{n-m}}}\amp \text{ if }\amp m\lt n\\ 1\amp \text{ if }\amp m=n\\ \end{array} \right. \end{equation*}

Two Definitions: Let \(x\not=0\) and \(m\in \mathbb{N}\text{.}\) Then, by definition

\begin{equation*} x^{-m}=\frac{1}{x^m} \end{equation*}

and

\begin{equation*} x^0=1. \end{equation*}

More power functions: See Figure 2.32.

Figure 2.32. Four power functions.

More Facts About Power Functions: Let a power function

\begin{equation*} f(x)=x^{-m}=\frac{1}{x^m}, m\in \mathbb{N} \end{equation*}

be given.

  1. What is the domain of the function \(f\text{?}\)

    Solution

    The domain of the function $f$ is the set \(\{x\in \mathbb{R}:x\not=0\}=\mathbb{R}\backslash \{0\}\text{.}\)

  2. What is the range of the function \(f\text{?}\)

    Solution

    If \(m\) is an odd integer then the range of the function \(f\) is the set \(\{x\in\mathbb{R}:x\not= 0\}=(-\infty,0)\cup (0,\infty)\text{.}\)

    If \(m\) is an even integer then the range of the function \(f\) is the set \(\{x\in\mathbb{R}:x> 0\}=(0,\infty)\text{.}\)

  3. Find the zeros of the function \(f\text{,}\) i.e. solve the equation \(f(x)=0\text{.}\)

    Solution

    Note that the numerator of the function \(f\) equals to 1, so \(f(x)\not=0\) for all \(x\in \mathbb{R}\backslash \{0\}$\text{.}\)

  4. Determine the intervals of increase and decrease for the function \(f\text{.}\)

    Solution

    If \(m\) is an odd positive integer then \(f\) is a decreasing function on \((-\infty,0)\) and \((0,\infty)\text{.}\)

    If \(m\) is an even positive integer then \(f\) is a decreasing function on \((-\infty,0)\) and increasing on \((0,\infty)\text{.}\)

  5. Determine positive integers \(m\) for which the function \(f(x)=\frac{1}{x^m}\) can be the inverse function of another function.

    Solution

    Observe that if \(m\) is an even number then \(f\) fails the horizontal line test and hence is not a one–to–one function. This implies that in this case it does not have an inverse and thus cannot be the inverse function of another function.

    In the case that \(m\) is odd then, by the horizontal line test, \(f\) is one–to–one and hence there is \(f^{-1}(x)\text{.}\) Recall that \((f^{-1})^{-1}=f\text{.}\)

    Can we find the formula for \(f^{-1}(x)\) where \(f(x)=\frac{1}{x^m}\text{,}\) \(m\) and odd positive integer and \(x\not= 0\text{?}\)

    We start with

    \begin{equation*} y=\frac{1}{x^m} \end{equation*}

    and then interchange the roles of “\(x\)” and “\(y\)” to obtain

    \begin{equation*} x=\frac{1}{y^m} \Leftrightarrow y^m=\frac{1}{x}, y\not=0,\ x\not= 0. \end{equation*}

    Since \(m\) is odd it follows that

    \begin{equation*} y=\left(\frac{1}{x}\right)^{\frac{1}{m}}=\sqrt[m]{\frac{1}{x}}=\frac{1}{\sqrt[m]{x}}, \ x\not= 0. \end{equation*}

    Therefore \(\displaystyle f^{-1}(x)=\frac{1}{\sqrt[m]{x}}\text{,}\) \(x\not=0\text{.}\)

    Note that if \(m=1\) then \(f^{-1}(x)=f(x)=\frac{1}{x}\text{.}\) Otherwise \(f^{-1}\not= f\text{.}\) See Figure 2.33.

    Figure 2.33. Functions \(f(x)=\frac{1}{x^3}\) and \(f^{-1}(x)=\frac{1}{\sqrt[3]{x}}\text{.}\)
  6. Summary:

    \begin{equation*} \begin{array}{l|l|l} f(x)=x^{-m}, m\in\mathbb{N}\amp m \text{ even}\amp m \text { odd}\\ \hline \text{Domain}\amp \mathbb{R}\backslash \{0\}\amp \mathbb{R}\backslash \{0\}\\ \hline \text{Range} \amp (0,\infty)\amp (-\infty,0)\cup (0,\infty)\\ \hline f(x)=0 \amp \text{never}\amp \text{never}\\ \hline \text{Increasing}\amp (0,\infty)\amp \text{never}\\ \hline \text{Decreasing}\amp (-\infty,0)\amp (0,\infty)\text{ and } (0,\infty)\\ \hline \text{Odd or even}\amp \text{even}\amp \text{odd}\\ \end{array} \end{equation*}

More detective work:

  1. What is \(2^3\text{?}\)

  2. What is \(2^{-3}\text{?}\)

  3. What is \(\displaystyle 2^{\frac{22}{7}}\text{?}\)

  4. What is \(2^{\pi}\text{?}\)

Definition: For \(m\in \mathbb{N}\backslash\{1\}\) and \(x\in \mathbb{R}\) we define \(\displaystyle x^{\frac{1}{m}}\) as the real number for which

\begin{equation*} \left( x^{\frac{1}{m}}\right)^m=x \end{equation*}

if such number exists. If there are two numbers with this property (this may happened if \(m\) is even) we choose one that is non-negative.

The number \(\displaystyle x^{\frac{1}{m}}\) is called the \(m^{\text{th}}\) root of \(x\text{.}\)

Notation:

\begin{equation*} x^{\frac{1}{m}}=\sqrt[m]{x}, m\geq 3 \end{equation*}
\begin{equation*} x^{\frac{1}{2}}=\sqrt{x} \end{equation*}
Example 2.3.2. Rational powers.

Evaluate:

  1. \(\displaystyle \displaystyle 16^{\frac{1}{4}}\)

  2. \(\displaystyle \displaystyle \sqrt[4]{16}\)

  3. \(\displaystyle \displaystyle (-8)^{\frac{1}{3}}=\sqrt[3]{-8}.\)

  4. \(\displaystyle \displaystyle 4^{\frac{1}{2}}=\sqrt{4}\)

  5. \(\displaystyle \displaystyle (-4)^{\frac{1}{2}}=\sqrt{-4}\)

Solution
  1. Say \(\displaystyle 16^{\frac{1}{4}}=t\text{.}\) Then, by definition \(\displaystyle t^4=\left( 16^{\frac{1}{4}}\right)^4=16\) if such a number \(t\) exists. We note that there are two numbers with this property, \(t=-2\) and \(t=2\text{,}\) i.e. \((-2)^4=16\) and \(2^4=16\text{.}\) By definition, we choose the non-negative value \(t=2\) and we conclude that \(\displaystyle 16^{\frac{1}{4}}=2\text{.}\)

  2. By definition

    \begin{equation*} \sqrt[4]{16}=16^{\frac{1}{4}}=2. \end{equation*}
  3. Since \((-2)^3=-8\text{,}\) by definition \(\displaystyle (-8)^{\frac{1}{3}}=\sqrt[3]{-8}=-2\text{.}\)

  4. By definition \(\displaystyle 4^{\frac{1}{2}}=\sqrt{4}=2\text{.}\)

  5. Say \(\displaystyle (-4)^{\frac{1}{2}}=t\text{.}\) Then, by definition \(\displaystyle t^2=\left( (-4)^{\frac{1}{2}}\right)^2=-4\) if such a number \(t\) exists. But \(t^2\geq 0\) for all real numbers \(t\) and \(-4\lt 0\text{.}\)

    Hence there is no real number \(t\) such that \(t^2=-4\) and, by definition, \(\displaystyle (-4)^{\frac{1}{2}}\) does not exist.

Four more graphs: See Figure 2.34.

Figure 2.34. \(\displaystyle y=x^{\frac{1}{m}}=\sqrt[m]{x}, m=2,3,4,5\)

Even More Facts About Power Functions: Let a power function

\begin{equation*} f(x)=x^{\frac{1}{m}}=\sqrt[m]{x}, m\in \mathbb{N}\backslash\{1\} \end{equation*}

be given.

  1. What is the domain of the function \(f\text{?}\)

    Solution

    If \(m\) is an odd positive integer then the domain of \(f\) is the set of all real numbers.

    If \(m\) is an even positive integer then then the domain of \(f\) is the set of all non-negative real numbers, \([0,\infty)\text{.}\)

  2. What is the range of the function \(f\text{?}\)

    Solution

    If \(m\) is an odd positive integer then the range of \(f\) is the set of all real numbers.

    If \(m\) is an even positive integer then then the range of \(f\) is the set of all non-negative real numbers, \([0,\infty)\text{.}\)

  3. Find the zeros of the function \(f\text{,}\) i.e., solve the equation \(f(x)=0\text{.}\)

    Solution

    Note that \(f(x)=0\) if and only if \(x=0\text{.}\)

  4. Determine the intervals of increase and decrease for the function \(f\text{.}\)

    Solution

    The function is increasing on its domain.

  5. Summary:

    \begin{equation*} \begin{array}{l|l|l} f(x)=\sqrt[m]{x}, m\in\mathbb{N}\backslash\{1\}\amp m \text{ even}\amp m \text { odd}\\ \hline \text{Domain}\amp [0,\infty)\amp \mathbb{R}\\ \hline \text{Range} \amp [0,\infty)\amp \mathbb{R}\\ \hline f(x)=0 \amp x=0\amp x=0\\ \hline \text{Increasing}\amp \text{on its domain}\amp \text{on its domain}\\ \hline \text{Decreasing}\amp \text{never} \amp \text{never} \\ \hline \text{Odd or even}\amp \text{neither}\amp \text{odd}\\ \end{array} \end{equation*}

Functions and their inverses: See Figure 2.35.

Figure 2.35. Functions and their inverses

Two facts:

  1. If \(m\) is an even integer then \(\displaystyle f(x)=x^m\text{,}\) \(x\geq 0\text{,}\) is an one-to-one function and its inverse function is \(\displaystyle f^{-1}(x)=x^{\frac{1}{m}}=\sqrt[m]{x}\text{.}\) The domain of \(f^{-1}\) is the set of nonnegative real numbers.

  2. If \(m\) is an odd integer then \(\displaystyle f(x)=x^m\text{,}\) \(x\in \mathbb{R}\text{,}\) is an one–to–one function and its inverse function is \(\displaystyle f^{-1}(x)=x^{\frac{1}{m}}=\sqrt[m]{x}\text{.}\) The domain of \(f^{-1}\) is the set of all real numbers.

Definition: If \(m\in \mathbb{N}\text{,}\) \(n\in \mathbb{Z}\text{,}\) and \(x\in \mathbb{R}\) then

\begin{equation*} x^{\frac{n}{m}}=\left( x^{\frac{1}{m}}\right)^n \end{equation*}

whenever this is defined.

Must Know: Let \(x\) and \(y\) be real numbers and let \(m\) and \(n\) be rational numbers. Then

\begin{equation*} x^m\cdot x^n=x^{m+n} \end{equation*}
\begin{equation*} (x^m)^n=x^{mn} \end{equation*}
\begin{equation*} x^0=1 \end{equation*}
\begin{equation*} \frac{x^m}{x^n}=x^{m-n}, \ x\not= 0 \end{equation*}
\begin{equation*} x^m\cdot y^m=(xy)^m \end{equation*}
\begin{equation*} \left( \frac{x}{y}\right)^m=\frac{x^m}{y^m}, \ y\not= 0 \end{equation*}
Example 2.3.3. Power rules.

Simplify \(\displaystyle \left( \frac{x^3y^2z}{x^2y^2z^3}\right)^3=\)

Solution

By the rules listed above

\begin{equation*} \left( \frac{x^3y^2z}{x^2y^2z^3}\right)^3=\left(x^{3-2}y^{2-2}z^{1-3}\right)^2=(xy^0z^{-2})^3=(x\cdot 1\cdot z^{-2})^3=x^3z^{-6}=\frac{x}{z^6}. \end{equation*}