Skip to main content

Section 3.4 The Number \(e\) and Natural Logarithm

One of the first conditions of happiness is that the link between Man and Nature shall not be broken. — Lev Nikolayevich Tolstoy, Russian writer, 1828 – 1910

Question: What is the most beautiful mathematical expression?

See Figure 3.10.

Figure 3.10. Euler's Identity

Number \(e\text{.}\)

  • \(\displaystyle e\approx 2.71828182845904523536028747135266249775724709369995\ldots\)

  • First time mentioned in 1618 by (almost certainly) William Oughtred, 1574 – 1660.

  • The notation \(e\) made its first appearance in a letter written by Leonhard Euler (1707 – 1783) in 1731.

  • What is \(e\text{?}\)

    \begin{equation*} \text{If }x\to 0\text{ then } (1+x)^{\frac{1}{x}}\to e. \end{equation*}
  • Where is \(e\text{:}\) See Figure 3.11.

    Figure 3.11. The function \(f(x)=e^x\) is the exponential function with the property that the slope of its tangent line at the point \((1,0)\) equals to 1.
  • Why \(e\text{?}\) The number \(e\) plays a role in your everyday life.

    See Figure 3.12.

    Figure 3.12. The compound interest formula and the continuous compound interest formula

Natural logarithm: The inverse function of the function \(f(x)=e^x\) is the function \(f^{-1}(x)=\log_ex\text{.}\)

We write

\begin{equation*} \log_e(x)=\ln (x), x>0. \end{equation*}

We say that, for \(x>0\text{,}\) \(\ln x\) is the \textbf{natural logarithm of } \(x\text{.}\)

See Figure 3.13.

Figure 3.13. The function \(f(x)=e^x\) its inverse function \(f^{-1}(x)=\ln (x)\text{,}\) and the line \(y=x\text{.}\)

Summary:

\begin{equation*} \begin{array}{l|l|l} \amp f(x)=e^x\amp f^{-1}(x)=\ln (x)\\ \hline \text{Domain}\amp\mathbb{R}\amp(0,\infty)\\ \hline \text{Range} \amp (0,\infty)\amp \mathbb{R}\\ \hline \text{output}=0 \amp \text{Never}\amp x=1\\ \hline \text{output}=1 \amp x=0\amp x=e\\ \hline \text{Increasing}\amp \mathbb{R}\amp (0,\infty)\\ \hline \text{Decreasing}\amp \text{Never}\amp \text{Never}\\ \hline \text{One-to-one}\amp \text{Yes}\amp \text{Yes}\\ \hline \text{Inverse}\amp \ln x\amp e^x\\ \hline \text{Odd or even}\amp \text{Neither}\amp \text{Neither}\\ \hline \text{Vertical Asymptote}\amp --\amp x=0\\ \hline \text{Horizontal Asymptote}\amp y=0\amp --\\ \end{array} \end{equation*}

All you need to know. If \(x\gt 0\) then

\begin{equation*} \ln (x) =y \Leftrightarrow x=e^y. \end{equation*}
Example 3.4.1. Logarithmic equations.

Solve the equation:

  1. \(\displaystyle \ln (x+1)=2,\)

  2. \(\ln (x+12)-\ln(x+2)=\ln (x)\text{,}\)

  3. \(\displaystyle \displaystyle \frac{\ln (x^2+12)}{\ln(x+2)}=2.\)

Solution
  1. Observe that the domain of the given equation is the set \(\{x\in \mathbb{R}:x+1\gt 0\}=(-1,\infty)\text{.}\)

    By definition, for \(x\in (-1,\infty)\text{,}\)

    \begin{equation*} \ln (x+1)=2\Leftrightarrow x+1=e^2\Leftrightarrow x=e^2-1. \end{equation*}
  2. Observe that the domain of the given equation is given by

    \begin{equation*} D=\{x:x+12\gt 0, \ x+2\gt 0,\text{ and }x\gt 0\} \end{equation*}
    \begin{equation*} =\{x:x\gt -12, \ x\gt -2,\text{ and }x\gt 0\}=\{x:x\gt 0\}=(0,\infty). \end{equation*}

    If follows that, for all \(x\gt 0\text{,}\)

    \begin{equation*} \ln (x+12)-\ln(x+2)=\ln (x)\Leftrightarrow \ln\left(\frac{x+12}{x+2}\right)=\ln (x). \end{equation*}

    Since the function \(f(x)=\ln (x)\) is one–to–one, we have that, for all \(x\gt 0\text{,}\)

    \begin{equation*} \ln\left(\frac{x+12}{x+2}\right)=\ln (x)\Leftrightarrow \frac{x+12}{x+2}=x\Leftrightarrow x+12=x^2+2x\Leftrightarrow x^2+x-12=0. \end{equation*}

    The quadratic equation \(x^2+x-12=0\) has two solutions, \(x=-4\) and \(x=3\text{.}\)

    We eliminate \(x=-4\) since it is not in the domain of the given equation.

    Hence \(x=3\) is the only solution of the given equation.

  3. Observe that the domain of the given equation is given by

    \begin{equation*} D=\{x:x^2+12>0, \ x+2>0,\text{ and }\ln (x+2)\not= 0\}=\{x:x>-2,\text{ and }x+2\not=1\} \end{equation*}
    \begin{equation*} =\{x:x>-2,\text{ and }x\not=-1\}=(-2,-1)\cup (-1,\infty). \end{equation*}

    If follows that, for all \(x\in D\text{,}\)

    \begin{equation*} \frac{\ln (x^2+12)}{\ln(x+2)}=2\Leftrightarrow \ln (x^2+12)=2\ln (x+2) \end{equation*}
    \begin{equation*} \Rightarrow \ln (x^2+12)=\ln (x+2)^2\Leftrightarrow \ln (x^2+12)=\ln (x^2+4x+4). \end{equation*}

    Since the function \(f(x)=\ln (x)\) is one–to–one, we have that, for all \(x\in D\text{,}\)

    \begin{equation*} \frac{\ln (x^2+12)}{\ln(x+2)}=2\Rightarrow x^2+12=x^2+4x+4\Leftrightarrow 4x=8\Leftrightarrow x=2. \end{equation*}

    Clearly, \(2\in D\) and we conclude that \(x=2\) is the solution of the given equation.

Reminder: From the fact that the functions \(f(x)=e^x\) and \(g(x)=\ln (x)\) are inverse to each other it follows that:

\begin{equation*} \ln \left(e^x\right)=x, x\in \mathbb{R} \end{equation*}

and

\begin{equation*} e^{\ln (x)}=x, x>0. \end{equation*}
Example 3.4.2. The meaning of \(x^x\).
  1. What is the meaning of the expression \(\displaystyle x^x\text{,}\) \(x\gt 0\text{?}\)

  2. Evaluate: \(\displaystyle \pi^\pi\)

Solution
  1. By definition, for \(x\gt 0\text{,}\)

    \begin{equation*} x^x=e^{x\ln (x)}. \end{equation*}

    We justify this definition by observing the following.

    Say that \(x\gt 0\) and recall that, for \(x\gt 0\text{,}\) \(\displaystyle x=e^{\ln (x)}\text{.}\) Then

    \begin{equation*} e^{x\ln (x)}=\left( e^{\ln (x)}\right)^x=x^x. \end{equation*}
  2. By definition,

    \begin{equation*} \pi ^\pi=e^{\pi\ln\pi}\approx 36.46215965. \end{equation*}