Section 4.2 Cosine and Sine
After exponential quantities the circular functions, sine and cosine, should be considered because they arise when imaginary quantities are involved in the exponential. — Leonhard Euler, Swiss mathematician, physicist, astronomer, logician and engineer, 1707 – 1783
Reminder: We say that the angle that is associated with the arc of the length 1 measures 1 radian . See Figure 4.26 .
Figure 4.26. The angle that measures 1 radian . Reminder.
Figure 4.27. The unit circle, angles, and points.
\begin{equation*}
\begin{array}{c|c|}
x\amp \text{endpoint of the radius}\\
\text{in radians}\amp\ \text{corresponding to }x \\
\hline
\frac{\pi}{6}\amp \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right)\\
\hline
\frac{\pi}{4}\amp \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\\
\hline
\frac{\pi}{3}\amp \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\\
\hline
\frac{\pi}{2}\amp (0,1) \\
\hline
\frac{2\pi}{3}\amp \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)\\
\hline
\frac{3\pi}{4}\amp \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\\
\hline
\frac{5\pi}{6}\amp \left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)\\
\hline
\pi \amp (-1,0)\\
\hline
\frac{3\pi}{2} \amp (0,-1)\\
\hline
2\pi \amp (1,0)\\
\end{array}
\end{equation*}
Script 1:
\begin{equation*}
\begin{array}{lll}
\text{a real number } x \amp \to \amp \text{the unique corresponding point on the unit circle }X=(a,b)\\
\amp \to \amp x\mapsto a \text{ and } x\mapsto b\\
\amp \to \amp \text{ Call }a=\cos (x) \text{ and call }b=\sin (x)\\
\end{array}
\end{equation*}
Script 2: See Figure 4.28 .
Figure 4.28. From \(x\) to \(\cos x\) and \(\sin x\text{.}\) Definition: The cosine of \(x\text{,}\) denoted \(\cos x\text{,}\) is the first coordinate of the endpoint of the radius of the unit circle corresponding to \(x\text{.}\)
Definition: The sine of \(x\text{,}\) denoted \(\sin x\text{,}\) is the second coordinate of the endpoint of the radius of the unit circle corresponding to \(x\text{.}\)
Example 4.2.1 . Cosines and sines.
Complete the table:
Figure 4.29. The unit circle, angles, and points.
\begin{equation*}
\begin{array}{c|c|c|c}
x\amp \text{endpoint of the radius}\amp \cos x\amp \sin x\\
\text{in radians}\amp\ \text{corresponding to }x \amp \amp\\
\hline
\frac{\pi}{6}\amp \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right) \amp \amp\\
\hline
\frac{\pi}{4}\amp \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\amp \amp \\
\hline
\frac{\pi}{3}\amp \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\amp \amp \\
\hline
\frac{\pi}{2}\amp (0,1) \amp \amp\\
\hline
\frac{2\pi}{3}\amp \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)\amp \amp\\
\hline
\frac{3\pi}{4}\amp \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\amp \amp\\
\hline
\frac{5\pi}{6}\amp \left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)\amp \amp\\
\hline
\pi \amp (-1,0)\amp \amp\\
\hline
\frac{3\pi}{2} \amp (0,-1)\amp \amp\\
\hline
2\pi \amp (1,0)\amp \amp\\
\end{array}
\end{equation*}
Solution
By definition: \(\cos x\) is the first coordinate of the corresponding point on the unit circle and \(\cos x\) is the first coordinate of the corresponding point on the unit circle.
\begin{equation*}
\begin{array}{c|c|c|c}
x\amp \text{endpoint of the radius}\amp \cos x\amp \sin x\\
\text{in radians}\amp\ \text{corresponding to }x \amp \amp\\
\hline
\frac{\pi}{6}\amp \left(\frac{\sqrt{3}}{2},\frac{1}{2}\right) \amp \frac{\sqrt{3}}{2}\amp \frac{1}{2}\\
\hline
\frac{\pi}{4}\amp \left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\amp \frac{\sqrt{2}}{2} \amp \frac{\sqrt{2}}{2}\\
\hline
\frac{\pi}{3}\amp \left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)\amp \frac{1}{2} \amp \frac{\sqrt{3}}{2} \\
\hline
\frac{\pi}{2}\amp (0,1) \amp 0 \amp1 \\
\hline
\frac{2\pi}{3}\amp \left(-\frac{1}{2},\frac{\sqrt{3}}{2}\right)\amp -\frac{1}{2} \amp \frac{\sqrt{3}}{2}\\
\hline
\frac{3\pi}{4}\amp \left(-\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\amp -\frac{\sqrt{2}}{2} \amp \frac{\sqrt{2}}{2}\\
\hline
\frac{5\pi}{6}\amp \left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)\amp -\frac{\sqrt{3}}{2} \amp \frac{1}{2}\\
\hline
\pi \amp (-1,0)\amp -1 \amp 0\\
\hline
\frac{3\pi}{2} \amp (0,-1)\amp 0 \amp -1\\
\hline
2\pi \amp (1,0)\amp 1 \amp 0\\
\end{array}
\end{equation*}
Example 4.2.2 . More about cosines and sines.
Evaluate
\begin{equation*}
\cos \left(-\frac{\pi}{4}\right) \text{ and } \cos \left(\frac{7\pi}{4}\right)
\end{equation*}
Solution
See Figure 4.30 and Figure 4.31 .
Figure 4.30. \(\cos \left(-\frac{\pi}{4}\right) =\frac{\sqrt{2}}{2}\text{.}\)
Figure 4.31. \(\cos \left(\frac{7\pi}{4}\right) =\frac{\sqrt{2}}{2}\text{.}\)
Five facts. Let \(x\) be a real number. Then:
\(-1\leq\cos x\leq 1\) and \(-1\leq\sin x\leq 1\text{.}\) See Figure 4.32 .
Figure 4.32. \(-1\leq\cos x\leq 1\) and \(-1\leq\sin x\leq 1\text{.}\)
The function \(x\mapsto \cos x\) is even, i.e.
\begin{equation*}
\cos(-x)=\cos x.
\end{equation*}
See Figure 4.33 .
Figure 4.33. Note that the points with the coordinates \((\cos x,\sin x)\) and \((\cos (-x),\sin (-x))\) are symmetric with respect to the \(x\)-axis. Thus \(\cos(-x)=\cos x\text{.}\)
The function \(x\mapsto \sin x\) is odd, i.e.
\begin{equation*}
\sin(-x)=-\sin x.
\end{equation*}
See Figure 4.34 .
Figure 4.34. Note that the points with the coordinates \((\cos x,\sin x)\) and \((\cos (-x),\sin (-x))\) are symmetric with respect to the \(x\)-axis. Thus \(\sin(-x)=-\sin x\text{.}\)
\(\cos^2x+\sin^2x=1\text{.}\) See Figure 4.35 .
Figure 4.35. Since the point \((\cos x, \sin x)\) lie on the unit circle, it follows that \(\cos^2x+\sin^2x=1\)>.
Functions \(x\mapsto \cos x\) and \(x\mapsto \sin x\) are \(periodic\text{,}\) i.e.
\begin{equation*}
\cos (x+2\pi)=\cos x \text{ and } \sin (x+2\pi)=\sin x.
\end{equation*}
Solution
Note that, for any \(x\in \mathbb{R}\text{,}\) the angles \(x\) and \(x+2\pi\) are associated with the same point on the unit circle. This implies
\begin{equation*}
\cos (x+2\pi)=\cos x \text{ and } \sin (x+2\pi)=\sin x.
\end{equation*}
More facts: Sign of \(\cos x\) and \(\sin x\) for \(0\leq x\lt 2\pi\text{:}\)
\begin{equation*}
\begin{array}{c|c|c|c|c|c|c|c|c}
\amp x=0 \amp 0\lt x\lt \frac{\pi}{2} \amp x=\frac{\pi}{2} \amp \frac{\pi}{2}\lt x\lt \pi \amp x=\pi \amp \pi\lt x\lt \frac{3\pi}{2} \amp x=\frac{3\pi}{2} \amp \frac{3\pi}{2}\lt x\lt 2\pi \\
\hline
\cos x \amp 1\amp +\amp 0\amp -\amp -1\amp -\amp 0\amp +\\
\hline
\sin x\amp 0\amp +\amp 1\amp +\amp 0\amp -\amp -1\amp -\\
\end{array}
\end{equation*}
Example 4.2.3 . Sign of cosine and sine.
Where is \(\cos \alpha \lt 0\text{?}\) Where is\(\sin \alpha \gt 0\text{?}\)
Solution
Suppose that \(\alpha\) is an angle with the vertex at the origin. Also, suppose that the positive ray of the \(x\)–axis is the initial ray of the angle \(\alpha\text{.}\) See Figure 4.30 and Figure 4.31 .
Figure 4.36. If the terminal ray of the angle \(\alpha\) belongs to the \(2^{\text{nd}}\) or the \(3^{\text{rd}}\) quadrant then \(\cos \alpha\lt 0\text{.}\)
Figure 4.37. If the terminal ray of the angle \(\alpha\) belongs to the \(1^{\text{st}}\) or the \(2^{\text{nd}}\) quadrant then \(\sin \alpha \gt 0\) .
Two functions: See See Figure 4.38 and Figure 4.38 .
Figure 4.38. The function \(f(x)=\cos x\text{.}\)
Figure 4.39. The function \(g(x)=\sin x\text{.}\) All you need to know for now:
\begin{equation*}
\begin{array}{c|c|c}
\amp f(x)=\cos x \amp g(x)=\sin x\\
\hline
\text{Domain} \amp \mathbb{R} \amp \mathbb{R}\\
\hline
\text{Range} \amp [-1,1] \amp [-1,1]\\
\hline
\text{Zeros} \amp \frac{\pi}{2}+k\pi,\ k\in \mathbb{Z} \amp k\pi, \ k\in \mathbb{Z}\\
\hline
y=1 \amp x=2k\pi,\ k\in \mathbb{Z} \amp \frac{\pi}{2}+2k\pi, k\in \mathbb{Z}\\
\hline
y=-1 \amp (2k+1)\pi, k\in \mathbb{Z} \amp -\frac{\pi}{2}+2k\pi,\ k\in \mathbb{Z}\\
\hline
\text{Parity} \amp \text{Even} \amp \text{Odd}\\
\hline
\text{Period} \amp T=2\pi \amp T=2\pi\\
\end{array}
\end{equation*}