Section 6.14 Parametric Curves
These answers correspond to the problems in Section 4.2.x=−5sint, y=5cost, t∈[0,2π]
From 3t3+2t−3=2t3+2 obtain t3+2t−5=0. What can you tell about the function f(t)=t3+2t−5?
d2ydx2=ddt(dydx)dxdt=3t(2cost+tsint)2cos3t.
-
Note that x+y=1 and that x,y∈[0,1]. See Figure 6.14.1.
Figure 6.14.1. x=sin2Ï€t, y=cos2Ï€t y=x+2.
(a) dxdy=1−cosθsinθ. (b) d2xdy2=1−cosθsin3θ. (c) y=√3x−π√33+2.
A. Follow the curve as t increases.
(a) Express cost and sint in terms of x and y to get the circle (x+2)2+(y−1)2=4. Check which points correspond to t=0 and t=π2 to get the orientation. (b) Solve dydx=cott=1 for t∈(0,2π).
(a) dydx=−2cos2t3sin3t; (b) Note that for both t=π2 and t=3π2 the curve passes through the origin. Thus, y=±2x3. (c) C.
(a) dydx=2t−2. (b) y=x2+1. (c) m=2x1, b=1−x21. (d) Note that the point (2,0) does not belong to the curve. Since all tangent lines to the curve are given by y=2x1x+1−x21, x1∈R, we need to solve 0=4x1+1−x21 for x1. Hence x1=2±√5. The tangent lines are given by y=2(2±√5)x−8∓4√5.
(a) Note that if t=0 then x=y=0. (b) Solve x=t3−4t=t(t2−4)=0. Next, y(−2)=16, y(0)=y(2)=0. (c) From dydx=4(t−1)3t2−4 it follows that dydx|t=0=1 and dydx|t=2=12. The tangent lines are y=x and y=x2.
Observe that t=yx. (a) x3+y3=3xy. (b) From dxdt|t=1=−34 and dydt|t=1=34 it follows that the slope equals to dydx|t=1=−1. Alternatively, differentiate the expression in (a) with respect to x. (c) Use the fact that d2ydx2=ddx(dydx)=1dxdt⋅ddt(dydx) to obtain d2ydx2|t=1=−323. Alternatively, differentiate the expression in (a) with respect to x twice.
-
(a) dydx=−et⋅22t+1ln2. (b) d2ydx2=e2t⋅22t+1⋅(1+2ln2)ln2. (c) No, the second derivative is never zero. (d) y=2−2lnx. (e) See Figure 6.14.2.
Figure 6.14.2. x=e−t, y=22t (a) dydx=1+t. (b) y=x−1. (c) d2ydx2=e−t. (d) Observe that d2ydx2>0 for all t∈R.
a) dydx=14e1−5t. (b) d2ydx2=516e1−9t. (c) Note that d2ydx2|t=0=516e>0.
a) dydx=−t2. (b) y=2−(x−1)23.
(a) dydx=cost−tsintsint+tcost. (b) y=−π2(x−π2). (c) d2ydx2|t=π2=−2−π24<0.
(a) →v=bω⟨−sinωt,cosωt⟩; speed =|→v|=|bω|. (b) →a=−bω2⟨cosωt,sinωt⟩.
(a) dydx=t2−12t. (b) y−2=34(x−3).
(a) −27, 0. Solve y=0 for t. (b) (−24,8). (c) y=x+32. (d) d2ydx2=t2+312t3.
-
(a) (3,0). (b) (0,0). (c) See Figure 6.14.3. (d) 4x+6y=9√3. (e) Conclude from the graph and from what you have observed in (a) — (c) that the curve is concave up if t∈(π4,π2)∪(3π4,π). Alternatively you may discuss the sign of the second derivative.
Figure 6.14.3. x=3cos(2t), y=sin(4t) and 4x+6y=9√3 From dydx=3sint1−2cos2t we conclude that dydx is not defined if 1−2cos2t=0, 0≤t≤10. Thus, θ∈{π6,5π6,7π6,11π6,13π6,17π6}.
(a) dydx=−2e3t. (b) d2ydx2=6e4t. (c) d2ydx2>0. (d) y=x−2.
(a) dydx=3sin2tcost−3cos2tsint=−tant. (b) From d2ydx2=−sec2t−3cos2tsint=13cos4tsint we get d2ydx2|t=1=13cos41sin1>0.
-
(a) (1,0). (b) (−√24,√24). (c) See Figure 6.14.4. (d) Observe that dydx=−tant, t∉{0,π/2,π,3π/2}. 2x−2y+√2=0.; (e) Concave down. See the graph or discuss the sign of the second derivative. What is the domain of the second derivative?
Figure 6.14.4. x=cos3t, y=sin3t -
(a) Observe that by eliminating the parameter t, the equation becomes y2=x, (x,y)∈[0,1]×[−1,1]. See Figure 6.14.5. (b) Observe that solving dydx=12cost=1√3 gives t=π6. 4x−4√3y+3=0.
Figure 6.14.5. x=cos2t, y=cost (a) dydx=−e−2t,d2ydx2=e−3t. (b) From dydx=−e−2t=−1 we get that t=0. Thus the tangent line is y=−x.
-
(a) (0,0), (0,−9). (b) From dydx=2tt2−1 we get that the tangent line is horizontal at the point (0,−9) and vertical at the points (−2,−6) and (2,−6). (c) See Figure 6.14.6.
Figure 6.14.6. x=t(t2−3), y=3(t2−3) (a) dydx=23e−4t−1. (b) d2ydx2=89e−7t−3.