Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content

Section 6.13 Miscellaneous

These answers correspond to the problems in Section 3.8.

  1. Let f(x)=\ln x-cx^2\text{.} Note that the domain of f is the interval (0,\infty ) and that \ds \lim _{x\to \pm \infty }f(x)=-\infty\text{.} From \ds f'(x)=\frac{1}{x}-2cx it follows that there is a local (and absolute) maximum at \ds x=\frac{1}{\sqrt{2c}}\text{.} Since the function f is continuous on its domain, by the Intermediate Value Theorem, it will have a root if and only if \ds f\left( \frac{1}{\sqrt{2c}}\right) >0\text{.} Thus

    \begin{equation*} \ln \frac{1}{\sqrt{2c}} -c\cdot\frac{1}{2c}>0\Leftrightarrow \ln \frac{1}{\sqrt{2c}}>\frac{1}{2}\Leftrightarrow c\lt \frac{1}{2e}\text{.} \end{equation*}
  2. Note that the function y=3x^3+2x+12\text{,} as a polynomial, is continuous on the set of real numbers. Also, \ds \lim _{x\to -\infty }(3x^3+2x+12)=-\infty and \ds \lim _{x\to \infty }(3x^3+2x+12)=\infty\text{.} By the Intermediate Value Theorem, the function has at least one root. Next, note that y'=6x^2+2>0 for all x\in \mathbb{R}\text{.} This means that the function is increasing on its domain and therefore has only one root. (If there is another root, by Rolle's theorem there will be a critical number.)

  3. Take y=x^3+9x+5\text{.}

  4. a=-3\text{,} b=1\text{.} Solve f(10=6 and f"(1)=0\text{.}

  5. Note that the function f is continuous on its domain \mathbb{R}\backslash\{-1\}\text{.} Since \ds \lim _{x\to \infty }\frac{1}{(x+1)^2}=0 and |\sin x|\leq 1\text{,} for all x\in \mathbb{R}\text{,} it follows that \ds \lim _{x\to \infty }f(x)=\lim _{x\to \infty }(-2x)=- \infty\text{.} Also, \ds f(0)=1>0\text{.} By the Intermediate Value Theorem, the function has at least one root in the interval (0,\infty )\text{.} Next, note that \ds f'(x)=-\frac{2}{(x+1)^3} -2+\cos x\lt 0 for all x\in (0,\infty)\text{.} This means that the function is decreasing on (0,\infty) and therefore has only one root.

  6. (a) From s'(t)=v(t)=96-2t it follows that the initial velocity is v(0)=96 ft/sec. (b) The only critical number is t=48\text{.} By the second derivative test there is a local (and absolute) maximum there. (c) s(48)=2316 feet.

  7. (a) f'(3)=1\text{.} (b) (fg)'(2)=f'(2)g(2)+f(2)g'(2)=-4\text{.} (c) f(0.98)\approx f(1)+f'(1)(0.98-1)=3+3(-0.02)=2.94\text{.} (d) There is a critical point at (4,-1)\text{.}

  8. (a) The domain of f(x)=\arcsin x is the interval [-1,1] and its range is \ds \left[ -\frac{\pi }{2},\frac{\pi }{2}\right]\text{.} (b) For x\in (-1,1) let y=\arcsin x\text{.} Then \sin y=x and y'\cos y=1\text{.} Since \ds y \in \left( -\frac{\pi }{2},\frac{\pi }{2}\right) it follows that \cos y>0\text{.} Thus \ds \cos y =\sqrt{1-\sin ^2y}=\sqrt{1-x^2}\text{.} (c) The domain of the function g is the set of all real numbers and its range is the set \ds \left[ -\frac{\pi }{2},\frac{\pi }{2}\right]\text{.} See Figure 6.13.1. (d) \ds g'(x)=\left\{ \begin{array}{rl} 1& \mbox{if } x\in (4n-1,4n+1), \ n\in \mathbb{Z}\\ -1& \mbox{if } x\in (4n+1,4n+3), \ n\in \mathbb{Z}\\ \end{array} \right.\text{.} The derivative of g is not defined if x=2n+1\text{,} n\in \mathbb{Z}\text{.} (e) The function F(x)=4x-2+\cos \left( \frac{\pi x}{2}\right) is continuous on the set of real numbers. From \ds \lim _{x\to \pm \infty }F(x)=\pm \infty\text{,} by the Intermediate Value Theorem, the function F has at least one root. From \ds F'(x)=1-\frac{2}{\pi }\sin \left( \frac{\pi x}{2}\right)>0 we conclude that F is monotone.

    Figure 6.13.1. f(x)=\arcsin(\sin x)
  9. (a) \ds f'(x)=\frac{1-\ln x}{x^2}\text{.} (b) See Figure 6.13.2. (c) Since 99>e we have that \ds \frac{\ln 99}{99}\lt \frac{\ln 101}{101}\text{.} This is the same as 101\ln 99\lt 99\ln 101\text{.} Hence \displaystyle \ln 99^{101}\lt \ln 101^{99} and \displaystyle 99^{101}\lt 101^{99}\text{.}

    Figure 6.13.2. \ds f(x)=\frac{\ln x}{x}
  10. (a) 2x^3+x^2+5x+c, c\in \mathbb{R}\text{;} (b) \cosh (x)\text{;} (c) local minimum; (d) \displaystyle y^\prime =-x^4y^{-4}\text{;} (e) (-3,0)\text{.}

  11. (d) Take f(x)=x^3 and the point (0,0)\text{.} (e) For example, \ds f(x)=x-\frac{1}{x}\text{.}

  12. (e) Take f(x)=-x^4 and the point (0,0)\text{.} (f) f(x)= x^2+3x+1\text{.}