Section 6.15 Polar Coordinates
These answers correspond to the problems in Section 4.3.
\((x^2+y^2)^3=(y^2-x^2)\text{.}\) Multiply by \(r^2\) and use the fact that \(\cos 2\theta =cos ^2\theta -\sin ^2\theta\)
-
See Figure 6.15.1.
(a) \(r = 2\text{,}\) (b) \(r = 2\cos \theta\text{,}\) (c) \(r = \sin \theta\text{.}\)
-
On the given cardioid, \(x = (1 + \cos \theta ) \cos \theta\) and \(y = (1 + \cos \theta ) \sin \theta\text{.}\) The question is to find the maximum value of \(y\text{.}\) Note that \(y > 0\) is equivalent to \(\sin \theta > 0\text{.}\) From \(\ds \frac{dy}{d\theta } = 2\cos ^2 \theta + \cos \theta -1\) we get that the critical numbers of the function \(y = y(\theta )\) are the values of \(\theta\) for which \(\ds \cos \theta = \frac{-1 \pm 3}{4}\text{.}\) It follows that the critical numbers are the values of \(\theta\) for which \(\ds \cos \theta = -1\) or \(\ds \cos \theta = \frac{1}{2}\text{.}\) Since \(y_{\mbox{max} } > 0\) it follows that \(\ds \sin \theta = \sqrt{1-\left( \frac{1}{2}\right) ^2}=\frac{\sqrt{3}}{2}\) and the maximum height equals \(\ds y = \frac{3\sqrt{3}}{4}\text{.}\) See Figure 6.15.2.
-
See Figure 6.15.3.
See the graph \(r=\cos 3\theta\) (Figure 6.15.1) and apply the appropriate stretching.
-
See Figure 6.15.2.
-
For (a) see Figure 6.15.4 and for (b) see Figure 6.15.1. For (c) and (d) see Figure 6.15.5 and for (e) and (f) see Figure 6.15.6.
(a) \((x,y)=((1-\cos\theta)\cdot \cos\theta, (1-\cos\theta)\cdot \sin\theta)\text{.}\) (b) \(\ds \left.\frac{dy}{dx}\right|_{\theta=\frac{\pi}{2}}=-1\text{;}\) \(y=-x+1\text{.}\) (c) Horizontal tangent lines at \(\ds \left(-\frac{3}{4},\frac{3\sqrt{3}}{4}\right), \ \left(-\frac{3}{4},-\frac{3\sqrt{3}}{4}\right)\text{;}\) Vertical tangent line at \(\ds (0,0), \ (-2,0), \left(\frac{1}{4},\frac{\sqrt{3}}{4}\right),\ \left(\frac{1}{4},-\frac{\sqrt{3}}{4}\right)\text{.}\)
-
(a) \(\ds \frac{dy}{dx}=\frac{-2\sin 2\theta\sin\theta+\cos\theta\cos2\theta}{-2\sin 2\theta\cos\theta-\sin \theta\cos 2\theta}\text{.}\) (b) \(\ds \left(\frac{1}{2}\sqrt{1+\frac{1}{\sqrt{2}}},\frac{1}{2}\sqrt{1-\frac{1}{\sqrt{2}}}\right)\text{.}\) (c) \(y- \frac{1}{2}\sqrt{1-\frac{1}{\sqrt{2}}}= \frac{2\sqrt{2-\sqrt{2}}-\sqrt{2+\sqrt{2}}}{2\sqrt{2+\sqrt{2}}+\sqrt{2-\sqrt{2}}}\cdot\left(x-\frac{1}{2}\sqrt{1+\frac{1}{\sqrt{2}}}\right)\text{.}\) (d) See Figure 6.15.7.
-
(a) \((-2,-2\sqrt{3})\text{.}\) (b) See Figure 6.15.8. (c) \(\ds -\frac{1}{\sqrt{3}}\text{.}\)
(a) \((2\sqrt{3},2)\text{.}\) (b) See Figure 6.15.8. (c) \(\ds \sqrt{3}\text{.}\)
(a) \(\left(\frac{5\sqrt{3}}{4},\frac{5}{4}\right)\text{.}\) (b) Observe that \(r(0)=r(\pi)=4\) and \(\ds r\left(\frac{\pi}{2}\right)= r\left(\frac{3\pi}{2}\right)=1\text{.}\) (c) \(\ds \frac{\sqrt{3}}{23}\text{.}\)
(a) \((0,-3)\text{.}\) (b) Solve \(y=(1-2\sin \theta)\sin \theta =0\text{.}\) \((\pm 1,0)\text{.}\) (c) The middle graph corresponds to \(r=1+\sin 2\theta\) and the right graph corresponds to \(r=1-2\sin \theta\text{.}\)
(a) \((1,\sqrt{3})\text{.}\) (b) \(\ds \frac{1}{3\sqrt{3}}\text{.}\) (c) B.
-
(a) See Figure 6.15.9.
(b) 9. (c) \(\theta = 0\text{,}\) \(\ds \frac{\pi }{3}\text{,}\) \(\ds \frac{2\pi }{3}\text{,}\) \(\pi\text{,}\) \(\ds \frac{4\pi }{3}\text{,}\) \(\ds \frac{5\pi }{3}\text{,}\) \(2\pi\text{.}\) (d) The remaining points of intersection are obtained by solving \(-1 = 1 + 2 \sin 3\theta\text{.}\)
-
(a) \(r(0) = 2\text{,}\) \(\ds r \left( \frac{\pi }{2}\right) = 2+e\text{,}\) \(\ds r \left( \frac{3\pi }{2}\right) = e^{-1}\text{.}\) (b) See Figure 6.15.10.
(c) From \(\ds \frac{dr}{d\theta }= \cos \theta (1 + e^{\sin \theta }) = 0\) we conclude that the critical numbers are \(\ds \frac{\pi }{2}\) and \(\ds \frac{3\pi }{2}\text{.}\) By the Extreme Value Theorem, the minimum distance equals \(e^{-1}\text{.}\)
(a) \(\ds A=\left( r=\sqrt{2},\theta= \frac{\pi }{4}\right)\text{,}\) \(\ds B=\left( 4,\frac{5\pi }{3}\right)\text{,}\) \(\ds C=\left( 2,\frac{7\pi }{6}\right)\text{,}\) \(\ds D=\left( 2\sqrt{2}-1,\frac{3\pi }{4}\right)\text{;}\) (b) A, B, D.
-
(a) See Figure 6.15.11. (b) Solve \(\ds \sin \theta >-\frac{1}{2}\) to get \(\ds \theta \in \left[ -\pi, -\frac{5\pi }{6}\right) \cup \left( -\frac{\pi }{6},\pi \right)\text{.}\) (c) To find critical numbers solve \(\ds \frac{dr}{d\theta }=2\cos \theta =0\) in \([-\pi ,\pi )\text{.}\) It follows that \(\ds \theta =-\frac{\pi }{2}\) and \(\ds \theta =\frac{\pi }{2}\) are critical numbers. Compare \(r(-\pi )=r(\pi )=1\text{,}\) \(\ds r\left( -\frac{\pi }{2}\right) =-1\text{,}\) and \(\ds r\left( \frac{\pi }{2}\right) =3\) to answer the question.
-
(a) See Figure 6.15.12. (b) The slope is given by \(\ds \left. \frac{dy}{dx}\right| _{\theta =\frac{5\pi }{2}}\text{.}\) From \(x=r\cos \theta =\theta \cos \theta\) and \(y=\theta \sin \theta\) it follows that \(\ds \frac{dy}{dx}=\frac{\frac{dy}{d\theta }}{\frac{dx}{d\theta }}=\frac{\sin \theta +\theta \cos \theta }{\cos \theta -\theta \sin \theta}\text{.}\) Thus \(\ds \left. \frac{dy}{dx}\right| _{\theta =\frac{5\pi }{2}}=-\frac{2}{5\pi }\text{.}\) (c) \(\ds \sqrt{x^2+y^2}=\arctan \frac{y}{x}\text{.}\)
(a) \((0,5)\text{.}\) (b) \(x^2+y^2=5y\text{.}\) (c) \(x=5\sin \theta \cos \theta\text{,}\) \(y=5\sin ^2\theta\text{.}\) (d) \(\ds \frac{dy}{dx}=\frac{2\sin \theta\cos \theta }{\cos ^2\theta - \sin ^2\theta}=\tan 2\theta\text{.}\) (e) \(\ds y -\frac{5}{4}=\sqrt{3}\left( x-\frac{5\sqrt{3}}{4}\right)\text{.}\)
Solve \(2=4\cos \theta\) to get that curve intersect at \(( 1, \sqrt{3})\text{.}\) To find the slope we note that the circle \(r=2\) is given by parametric equations \(x=2\cos \theta\) and \(y=2\sin \theta\text{.}\) It follows that \(\ds \frac{dy}{dx}=\frac{2\cos \theta }{-2\sin \theta }=-\cot \theta\text{.}\) The slope of the tangent line at the intersection point equals \(\ds \left. \frac{dy}{dx}\right| _{\theta = \frac{\pi }{3}}=-\frac{\sqrt{3}}{3}\text{.}\)
-
See Figure 6.15.13 for the graph of the case \(b=1\text{,}\) \(k=0.01\text{,}\) and \(c=2\text{.}\) The position in \((x,y)-\)plane of the bee at time \(t\) is given by a vector function \(\ds \vec{s}(t)=\langle be^{kt}\cos ct,be^{kt}\sin ct\rangle\text{.}\) Recall that the angle \(\alpha\) between the velocity and acceleration is given by \(\ds \cos\alpha=\frac{\vec{v}\cdot\vec{a}}{|\vec{v}||\vec{a}|}\text{,}\) where \(\vec{v}(t)=\vec{s}^\prime(t)\) and \(\vec{a}(t)=\vec{s}^{\prime\prime}(t)\text{.}\) One way to solve this problem is to consider that the bee moves in the complex plane. In that case its position is given by
\begin{equation*} F(t)=be^{kt}\cos ct+i\cdot be^{kt}\sin ct=be^{kt}(\cos ct +i\sin ct)=be^{(k+ic)t}\text{,} \end{equation*}where \(i\) is the imaginary unit. Observe that \(\vec{v}(t)=\langle \mbox{Re} (F^\prime(t)),\mbox{Im} (F^\prime(t))\rangle\) and \(\vec{a}(t)=\langle \mbox{Re} (F^{\prime\prime}(t)),\mbox{Im} (F^{\prime\prime}(t))\rangle\text{.}\) Next, observe that \(F^\prime(t)=(k+ic)F(t)\) and \(F^{\prime\prime}(t)=(k+ic)^2F(t)\text{.}\) From \(F^{\prime\prime}(t)=(k+ic)F^\prime(t)\) it follows that \(\mbox{Re} (F^{\prime\prime}(t))=k\cdot \mbox{Re} (F^\prime(t))-c\cdot \mbox{Im} (F^\prime(t))\) and \(\mbox{Im} (F^{\prime\prime}(t))=k\cdot \mbox{Im} (F^\prime(t))+c\cdot \mbox{Re} (F^\prime(t))\text{.}\) Finally, \(\vec{v}\cdot\vec{a}=\mbox{Re} (F^\prime(t))\cdot \mbox{Re} (F^{\prime\prime}(t))+\mbox{Im} (F^\prime(t))\cdot \mbox{Im} (F^{\prime\prime}(t))=k((\mbox{Re} (F^\prime(t)))^2+(\mbox{Im} (F^\prime(t)))^2)=k|F^\prime(t)|^2\) which immediately implies the required result.