Section 6.11 Antiderivatives and Differential Equations
These answers correspond to the problems in Section 3.6.−443+2e(1−6e2).
g(x)=ln|x|+arctanx+c.
f(t)=2et−3sint+t+2.
f(x)=sin8x4+13e3x−x+23.
f(x)=Aekx.
f(x)=2sinx+2x4−ex+8.
g(x)=−cosx−x−1−ex+π−1+eπ
f(x)=13x3+x2+3x−2423 and f(1)=−2293.
h(1)=2e(1−e2)−443.
F(z)=12ln(z2+9).
It is given that f(0)=1 and f′(0)=0. Thus f(x)=x3+1.
∫dxx(1+lnx)=ln(1+lnx)+C.
-
F(x)=−19(1−x)9
∫tan2xdx=∫(sec2x−1)dx=tanx−x+C
F(x)=1√2arctanx√2+C
F(x)=16e3x+12ex+C
f(t)=2et−3sint+t−2.
s(t)=2et−3sint−(2eπ+3)t−2
s(t)=−sint−3cost+3t+3.
(a) v(t)=−10t+5; (b) s(t)=−5t2+5t+30; (c) t=6 s; (d) |v(6)|=5 m/s.
It is given that x(0)=10, x′(0)=v(0)=0 and x"(t)=12t\text{.} Hence x(t)=2t^3+10\text{.}
(a) \ds v(t)=\frac{3}{2}t^2+6\text{.} (b) 4 seconds. Solve v(t)=30\text{.}
(a) Let s(t) be the height of the ball after t seconds. It is given that s(0)=0\text{,} s'(0)=v(0)=64 ft/sec and s"(0)=v'(0)=a(0)=-32 ft/sec^2\text{.} Thus s(t)=-16t^2+64t=16t(4-t)\text{.} From s(4)=0 it follows that the ball is in the air for 4 seconds. (b) v(4)=s'(4)=-64 ft/sec^2\text{.}
(a) From the fact that the velocity of an falling object is approximated by v(t)=-gt+v(0) and the fact that, in the given case, v(t)=0\text{,} we conclude that the distance y=y(t) between the ball and the surface of the Earth at time t is given by \ds \frac{dy}{dt}=-gt\text{.} Hence, \ds y=-\frac{gt^2}{2}+H\text{,} where H is the height of the blimp at the moment when the ball was dropped. At the moment when the ball hits surface we have that \ds 0=-\frac{gt^2}{2}+H which implies that it takes \ds t=\sqrt{\frac{2H}{g}} seconds for a ball to drop H metres. (b) \ds v=-\sqrt{2Hg}=-10\cdot 7=-70 m/sec.
\ds y=\frac{1}{3}\cdot(-2\cos 3x +x^3+e^{3x}+1)+x\text{.}
\ds y=\sin \left( x+\frac{\pi }{2}\right)\text{.}
\ds y=\tan \left( x-\frac{\pi }{4}\right)\text{.}
\ds y=4e^x-1\text{.}
\displaystyle \ds x(t)=-3(4t-7)^{-3}+4
\ds y=\ln (x+e^2)\text{.}
\ds y=2-e^{-t}\text{.}
(a) \ds y=\frac{3}{2}\sin 2x-\frac{1}{4}\exp (-4x)+\frac{5}{4}\text{.} (b) \ds F(x)=\frac{1}{2}\ln (2x+1)+C\text{.}
v(0)=80 ft/s.
Let x be the number of towels sold per week at the price p=p(x)\text{.} Let C=C(x) be the cost of manufacturing x towels. It is given that \ds \frac{dC}{dx}=0.15 CAD/towel and \ds \frac{dp}{dx}=-\frac{0.10}{50} CAD/towel. Hence C(x)=0.15x+a and \ds p(x)=-\frac{0.10x}{50}+b\text{,} for some constants a and b (in CAD). Then the profit is given by \ds P=P(x)=\mbox{Revenue} -\mbox{Cost} =x\cdot p(x)-C(x)=-\frac{0.10x^2}{50}+bx-0.15x-a\text{.} The quantity that maximizes revenue is x=1000 towels and it must be a solution of the equation \ds \frac{dP}{dx}=-\frac{0.10x}{25}+b-0.15=0\text{.} Hence \ds -\frac{0.10\cdot 1000}{25}+b-0.15=0 and b=4.15 CAD. The price that maximizes the profit is \ds p=-\frac{0.10\cdot 1000}{50}+4.15=2.15 CAD.