Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Skip to main content

Section 6.1 Limits

These answers correspond to the problems in Section 1.2.

    1. 20.

    2. Does not exist.

    3. 0.

    4. 100.

    5. Does not exist. Consider the domain of g(x)=x2+20x100=(x10)2.

  1. 8ln4.

  2. 0. Note the exponential function in the denominator.

  3. 35. Divide the numerator and denominator by the highest power.

  4. 52.

  5. 3.

  6. 2.

  7. ac.

  8. 0. What is the value of 3x+|13x| if x<13?

  9. 1.

  10. 1.

  11. 32.

  12. 23.

  13. 12.

  14. . Note that x21=(x1)(x+1).

  15. 2. Which statement is true for x<1: |x1|=x1 or |x1|=1x?

    1. 1.5.

    2. 1.5.

    3. No. The left-hand limit and the right-hand limit are not equal.

  16. 1.

  17. 45.

  18. .

  19. Does not exist

  20. Does not exist.

  21. 0.

  22. 18. Rationalize the numerator.

  23. 112. Note that x8=(3x2)(3x2+23x+4).

  24. 116

  25. 3.

  26. a=b=4. Rationalize the numerator. Choose the value of b so that x becomes a factor in the numerator.

  27. e4.

  28. e1/6.

  29. 12.

  30. 112. Note that x8=(3x2)(3x2+23x+4).

  31. 12. Rationalize the numerator.

  32. 32. Rationalize the numerator. Note that x and use the fact that if x<0 then x=x2.

  33. 12.

  34. 32.

  35. Since the denominator approaches 0 as x2, the necessary condition for this limit to exist is that the numerator approaches 0 as x2. Thus we solve 4b30+15+b=0 to obtain b=3. lim

  36. a=4\text{.} Write \ds f(x)=x+\frac{(a-1)x+5}{x+1}\text{.}

  37. \displaystyle \lim _{x\to \infty}\frac{\ln x}{x}=0\text{.}

  38. From \displaystyle \lim _{x\to 4}(x+2)=6 and \displaystyle \lim _{x\to 4}(x^2-10)=6\text{,} by the Squeeze Theorem, it follows that \displaystyle \lim _{x\to 4}f(x)=6\text{.}

  39. 1.

    1. Use the fact \ds -x^4\leq x^4\sin\left(\frac{1}{x}\right)\leq x^4\text{,} x\not= 0\text{.}

    2. From the fact that \displaystyle \left| \sin (1/x)\right|\leq 1 for all x\not= 0 and the fact that the function \displaystyle y=e^x is increasing conclude that \displaystyle e^{-1}\leq e^{\sin (1/x)}\leq e for all x\not= 0\text{.} Thus \displaystyle e^{-1} \cdot \sqrt{x} \leq \sqrt{x}e^{\sin (1/x)} \leq e\cdot \sqrt{x} for all x>0\text{.} By the Squeeze Theorem, \displaystyle \lim _{x\to 0^+}\left( \sqrt{x}e^{\sin (1/x)}\right) =0\text{.}

  40. 0\text{.} Squeeze Theorem.

  41. 0\text{.} Squeeze Theorem.

  42. 0\text{.} Squeeze Theorem.

  43. 0\text{.} Squeeze Theorem.

  44. 0\text{.} Squeeze Theorem.

  45. -\infty\text{.}

  46. 0\text{.}

  47. 2\text{.}

  48. Does not exist.

  49. \displaystyle \ds -\frac{2}{7}

  50. \infty\text{.}

  51. \displaystyle \frac{76}{45}\text{.} This is the case “0/0”. Apply L'Hospital's rule.

  52. \ds \frac{a}{b}\text{.}

  53. \displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{1}{2}\cdot \left( \frac{\sin x}{x}\right) ^{100}\cdot \frac{2x}{\sin 2x}\text{.}

  54. 7. Write \displaystyle 7\cdot \left( \frac{x}{\sin x}\right) ^{101}\cdot \frac{\sin 7x}{7x}\text{.}

  55. 7.

  56. \displaystyle \frac{3}{5}\text{.} This is the case “0/0”. Apply L'Hospital's rule.

  57. \displaystyle \frac{3}{5}\text{.}

  58. 0\text{.} Write \displaystyle x^2 \cdot \frac{x}{\sin x}\cdot \sin \left( \frac{1}{x^2}\right)\text{.}

  59. Does not exist. \displaystyle \frac{\sin x}{2|x|}\cdot \frac{1}{\sqrt{\frac{\sin 4x}{4x}}}\text{.}

  60. \displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{1-\cos x}{x^2}\cdot\frac{x}{\sin x}\text{.}

  61. -1\text{.}

  62. -1\text{.}

  63. 1\text{.} Substitute \displaystyle t=\frac{1}{x}\text{.}

  64. 0\text{.} This is the case "\infty - \infty"\text{.} Write \displaystyle \frac{x- \sin x}{x\sin x} and apply L'Hospital's rule.

  65. \displaystyle \ds \frac{1}{6}

  66. 0\text{.}

  67. 0\text{.} This is the case ``0\cdot \infty ''\text{.} Write \displaystyle \frac{\ln \sin x}{\frac{1}{\sin x}} and apply L'Hospital's rule.

  68. -2\text{.}

  69. \infty\text{.}

  70. 0\text{.} This is the case ``\infty /\infty ''\text{.} Apply L'Hospital's rule.

  71. 0\text{.}

  72. 0\text{.}

  73. 0\text{.}

  74. 1\text{.} This is the case ``0/0''\text{.} Write \displaystyle \frac{\ln (1+x)}{x} and apply L'Hospital's rule.

  75. \displaystyle \frac{3}{2}\text{.} Use properties of logarithms first.

  76. \displaystyle \frac{3}{2}\text{.}

  77. \ln 2\text{.} The denominator approaches 2.

  78. 0\text{.} This is the case “0/0”. Apply L'Hospital's rule.

  79. \displaystyle -\frac{1}{\pi ^2}\text{.} Apply L'Hospital's rule twice.

  80. \infty\text{.} This is the case "\infty - \infty". Write \displaystyle \frac{\sin x-x^2\cos x}{x^2\sin x} and apply L'Hospital's rule.

  81. \ds \frac{1}{2}\text{.}

  82. \displaystyle e^{\frac{1}{2}}\text{.} This is the case "\displaystyle 1^\infty". Write \displaystyle e^{\frac{\ln \cosh x}{x^2}}\text{.} Apply L'Hospital's rule and use the fact that the exponential function f(x)=e^x is continuous.

  83. 1\text{.}

  84. \ds e^{-1/2}\text{.}

  85. 1\text{.} This is the case "\displaystyle 0^0". Write \displaystyle x^x=e^{x\ln x}=e^{\frac{\ln x}{x^{-1}}}\text{.} Apply L'Hospital's rule and use the fact that the exponential function f(x)=e^x is continuous.

  86. 1\text{.}

  87. 1\text{.}

  88. 1\text{.}

  89. e\text{.}

  90. 1\text{.} This is the case "\infty^0".

  91. 1\text{.}

  92. e^2\text{.}

  93. \displaystyle e^3\text{.}

  94. \displaystyle 0\text{.}

  95. 1\text{.} Write \displaystyle e^{x\ln \frac{x}{x+1}}=e^{x\ln x}\cdot e^{-x\ln (x+1)} and make your conclusion.

  96. \ds e^{\frac{1}{e}}\text{.}

  97. 1\text{.}

  98. 1\text{.} Squeeze Theorem.

  99. \displaystyle e^{-2}\text{.} Write \displaystyle \left( (1-2x)^{-\frac{1}{2x}}\right) ^{-2}\text{.}

  100. \displaystyle e^{\frac{7}{5}}\text{.} Write \displaystyle \left( (1+7x)^{\frac{1}{7x}}\right) ^{\frac{7}{5}}\text{.}

  101. \displaystyle e^{\frac{3}{8}}\text{.} Write \displaystyle \left( (1+3x)^{\frac{1}{3x}}\right) ^{\frac{3}{8}}\text{.}

  102. \displaystyle e^{\frac{3}{2}}\text{.} Write \displaystyle \left( \left( 1+\frac{x}{2}\right) ^{\frac{2}{x}}\right) ^{\frac{3}{2}}\text{.}

  103. 10\text{.} Use the fact that \displaystyle L=\lim _{n\to \infty }x_n to conclude L^2=100\text{.} Can L be negative?

    1. \displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{2\sin ^2 \frac{x}{2}}{x^2}\text{,} or use L'Hospital's rule.

    2. 0\text{.}

    3. Does not exist. Note that the domain of f(x)=\arcsin x is the interval [-1,1]\text{.}

    1. \displaystyle \frac{1}{64}\text{.}

    2. \displaystyle -\frac{1}{\pi }\text{.} Use L'Hospital's rule.

    3. 1\text{.} Divide the numerator and denominator by u\text{.}

    4. e^{-2}\text{.}

    5. \displaystyle \displaystyle \frac{1}{2}

    6. \infty\text{.} Think, exponential vs. polynomial.

  104. (a) 2016\cdot 2^{2015}\text{;} (b) \displaystyle \frac{1}{2}\text{;} (c) \displaystyle \frac{7}{3}\text{;} (d) 1; (e) 0; (f) \displaystyle \frac{\sin 3 - 3}{27}\text{.}

  105. (a) Does not exist. Consider \displaystyle \lim _{x\to 0}\frac{xf(x)}{x|x|}\text{;} (b) \displaystyle \frac{1}{3}\text{;} (c) \displaystyle -\frac{1}{4}\text{.} Note that x\lt 0\text{;} (d) 0\text{.;} (e) e\text{.}

  106. (a) \ds \frac{1}{4}\text{;} (b) -1\text{;} (c) 0\text{.}

  107. (a) -\infty\text{;} (b) 3; (c) 2; (d) 0.

  108. Let \varepsilon >0 be given. We need to find \delta =\delta (\varepsilon )>0 such that |x-0|\lt \delta \Rightarrow |x^3-0|\lt \varepsilon\text{,} which is the same as |x|\lt \delta \Rightarrow |x^3|\lt \varepsilon\text{.} Clearly, we can take \delta =\sqrt[3]{\varepsilon }\text{.} Indeed, for any \varepsilon >0 we have that |x|\lt \sqrt[3]{\varepsilon } \Rightarrow |x|^3=|x^3|\lt \varepsilon and, by definition, \displaystyle \lim _{x\to 0}x^3=0\text{.}

  109. (c) For any \varepsilon >0 there exists \delta =\delta (\varepsilon )>0 such that |x-1|\lt \delta \Rightarrow |2x^2-2|\lt \varepsilon\text{.}

  110. Take, for example, f(x)=\mbox{sign} (x)\text{,} g(x)=-\mbox{sign} (x)\text{,} and a=0\text{.}

  111. \displaystyle \ds \frac{2}{3}

  112. \displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=\lim _{h\to 0}\frac{f'(x+h)+f'(x-h)}{2} and, since f' is continuous, \displaystyle \lim _{h\to 0}f'(x+h)=\lim _{h\to 0}f'(x-h)=f'(x)\text{.}