Section 6.1 Limits
These answers correspond to the problems in Section 1.2.20.
Does not exist.
0.
100.
Does not exist. Consider the domain of g(x)=√−x2+20x−100=√−(x−10)2.
−8ln4.
0. Note the exponential function in the denominator.
35. Divide the numerator and denominator by the highest power.
52.
3.
2.
ac.
0. What is the value of 3x+|1−3x| if x<13?
1.
1.
3√2.
−23.
−12.
∞. Note that x2−1=(x−1)(x+1).
−2. Which statement is true for x<1: |x−1|=x−1 or |x−1|=1−x?
1.5.
−1.5.
No. The left-hand limit and the right-hand limit are not equal.
1.
45.
∞.
Does not exist
Does not exist.
0.
18. Rationalize the numerator.
112. Note that x−8=(3√x−2)(3√x2+23√x+4).
116
3.
a=b=4. Rationalize the numerator. Choose the value of b so that x becomes a factor in the numerator.
e4.
e1/6.
12.
112. Note that x−8=(3√x−2)(3√x2+23√x+4).
12. Rationalize the numerator.
−32. Rationalize the numerator. Note that x→−∞ and use the fact that if x<0 then x=−√x2.
−12.
32.
Since the denominator approaches 0 as x→−2, the necessary condition for this limit to exist is that the numerator approaches 0 as x→−2. Thus we solve 4b−30+15+b=0 to obtain b=3. lim
a=4\text{.} Write \ds f(x)=x+\frac{(a-1)x+5}{x+1}\text{.}
\displaystyle \lim _{x\to \infty}\frac{\ln x}{x}=0\text{.}
From \displaystyle \lim _{x\to 4}(x+2)=6 and \displaystyle \lim _{x\to 4}(x^2-10)=6\text{,} by the Squeeze Theorem, it follows that \displaystyle \lim _{x\to 4}f(x)=6\text{.}
1.
Use the fact \ds -x^4\leq x^4\sin\left(\frac{1}{x}\right)\leq x^4\text{,} x\not= 0\text{.}
From the fact that \displaystyle \left| \sin (1/x)\right|\leq 1 for all x\not= 0 and the fact that the function \displaystyle y=e^x is increasing conclude that \displaystyle e^{-1}\leq e^{\sin (1/x)}\leq e for all x\not= 0\text{.} Thus \displaystyle e^{-1} \cdot \sqrt{x} \leq \sqrt{x}e^{\sin (1/x)} \leq e\cdot \sqrt{x} for all x>0\text{.} By the Squeeze Theorem, \displaystyle \lim _{x\to 0^+}\left( \sqrt{x}e^{\sin (1/x)}\right) =0\text{.}
0\text{.} Squeeze Theorem.
0\text{.} Squeeze Theorem.
0\text{.} Squeeze Theorem.
0\text{.} Squeeze Theorem.
0\text{.} Squeeze Theorem.
-\infty\text{.}
0\text{.}
2\text{.}
Does not exist.
\displaystyle \ds -\frac{2}{7}
\infty\text{.}
\displaystyle \frac{76}{45}\text{.} This is the case “0/0”. Apply L'Hospital's rule.
\ds \frac{a}{b}\text{.}
\displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{1}{2}\cdot \left( \frac{\sin x}{x}\right) ^{100}\cdot \frac{2x}{\sin 2x}\text{.}
7. Write \displaystyle 7\cdot \left( \frac{x}{\sin x}\right) ^{101}\cdot \frac{\sin 7x}{7x}\text{.}
7.
\displaystyle \frac{3}{5}\text{.} This is the case “0/0”. Apply L'Hospital's rule.
\displaystyle \frac{3}{5}\text{.}
0\text{.} Write \displaystyle x^2 \cdot \frac{x}{\sin x}\cdot \sin \left( \frac{1}{x^2}\right)\text{.}
Does not exist. \displaystyle \frac{\sin x}{2|x|}\cdot \frac{1}{\sqrt{\frac{\sin 4x}{4x}}}\text{.}
\displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{1-\cos x}{x^2}\cdot\frac{x}{\sin x}\text{.}
-1\text{.}
-1\text{.}
1\text{.} Substitute \displaystyle t=\frac{1}{x}\text{.}
0\text{.} This is the case "\infty - \infty"\text{.} Write \displaystyle \frac{x- \sin x}{x\sin x} and apply L'Hospital's rule.
\displaystyle \ds \frac{1}{6}
0\text{.}
0\text{.} This is the case ``0\cdot \infty ''\text{.} Write \displaystyle \frac{\ln \sin x}{\frac{1}{\sin x}} and apply L'Hospital's rule.
-2\text{.}
\infty\text{.}
0\text{.} This is the case ``\infty /\infty ''\text{.} Apply L'Hospital's rule.
0\text{.}
0\text{.}
0\text{.}
1\text{.} This is the case ``0/0''\text{.} Write \displaystyle \frac{\ln (1+x)}{x} and apply L'Hospital's rule.
\displaystyle \frac{3}{2}\text{.} Use properties of logarithms first.
\displaystyle \frac{3}{2}\text{.}
\ln 2\text{.} The denominator approaches 2.
0\text{.} This is the case “0/0”. Apply L'Hospital's rule.
\displaystyle -\frac{1}{\pi ^2}\text{.} Apply L'Hospital's rule twice.
\infty\text{.} This is the case "\infty - \infty". Write \displaystyle \frac{\sin x-x^2\cos x}{x^2\sin x} and apply L'Hospital's rule.
\ds \frac{1}{2}\text{.}
\displaystyle e^{\frac{1}{2}}\text{.} This is the case "\displaystyle 1^\infty". Write \displaystyle e^{\frac{\ln \cosh x}{x^2}}\text{.} Apply L'Hospital's rule and use the fact that the exponential function f(x)=e^x is continuous.
1\text{.}
\ds e^{-1/2}\text{.}
1\text{.} This is the case "\displaystyle 0^0". Write \displaystyle x^x=e^{x\ln x}=e^{\frac{\ln x}{x^{-1}}}\text{.} Apply L'Hospital's rule and use the fact that the exponential function f(x)=e^x is continuous.
1\text{.}
1\text{.}
1\text{.}
e\text{.}
1\text{.} This is the case "\infty^0".
1\text{.}
e^2\text{.}
\displaystyle e^3\text{.}
\displaystyle 0\text{.}
1\text{.} Write \displaystyle e^{x\ln \frac{x}{x+1}}=e^{x\ln x}\cdot e^{-x\ln (x+1)} and make your conclusion.
\ds e^{\frac{1}{e}}\text{.}
1\text{.}
1\text{.} Squeeze Theorem.
\displaystyle e^{-2}\text{.} Write \displaystyle \left( (1-2x)^{-\frac{1}{2x}}\right) ^{-2}\text{.}
\displaystyle e^{\frac{7}{5}}\text{.} Write \displaystyle \left( (1+7x)^{\frac{1}{7x}}\right) ^{\frac{7}{5}}\text{.}
\displaystyle e^{\frac{3}{8}}\text{.} Write \displaystyle \left( (1+3x)^{\frac{1}{3x}}\right) ^{\frac{3}{8}}\text{.}
\displaystyle e^{\frac{3}{2}}\text{.} Write \displaystyle \left( \left( 1+\frac{x}{2}\right) ^{\frac{2}{x}}\right) ^{\frac{3}{2}}\text{.}
10\text{.} Use the fact that \displaystyle L=\lim _{n\to \infty }x_n to conclude L^2=100\text{.} Can L be negative?
\displaystyle \frac{1}{2}\text{.} Write \displaystyle \frac{2\sin ^2 \frac{x}{2}}{x^2}\text{,} or use L'Hospital's rule.
0\text{.}
Does not exist. Note that the domain of f(x)=\arcsin x is the interval [-1,1]\text{.}
\displaystyle \frac{1}{64}\text{.}
\displaystyle -\frac{1}{\pi }\text{.} Use L'Hospital's rule.
1\text{.} Divide the numerator and denominator by u\text{.}
e^{-2}\text{.}
\displaystyle \displaystyle \frac{1}{2}
\infty\text{.} Think, exponential vs. polynomial.
(a) 2016\cdot 2^{2015}\text{;} (b) \displaystyle \frac{1}{2}\text{;} (c) \displaystyle \frac{7}{3}\text{;} (d) 1; (e) 0; (f) \displaystyle \frac{\sin 3 - 3}{27}\text{.}
(a) Does not exist. Consider \displaystyle \lim _{x\to 0}\frac{xf(x)}{x|x|}\text{;} (b) \displaystyle \frac{1}{3}\text{;} (c) \displaystyle -\frac{1}{4}\text{.} Note that x\lt 0\text{;} (d) 0\text{.;} (e) e\text{.}
(a) \ds \frac{1}{4}\text{;} (b) -1\text{;} (c) 0\text{.}
(a) -\infty\text{;} (b) 3; (c) 2; (d) 0.
Let \varepsilon >0 be given. We need to find \delta =\delta (\varepsilon )>0 such that |x-0|\lt \delta \Rightarrow |x^3-0|\lt \varepsilon\text{,} which is the same as |x|\lt \delta \Rightarrow |x^3|\lt \varepsilon\text{.} Clearly, we can take \delta =\sqrt[3]{\varepsilon }\text{.} Indeed, for any \varepsilon >0 we have that |x|\lt \sqrt[3]{\varepsilon } \Rightarrow |x|^3=|x^3|\lt \varepsilon and, by definition, \displaystyle \lim _{x\to 0}x^3=0\text{.}
(c) For any \varepsilon >0 there exists \delta =\delta (\varepsilon )>0 such that |x-1|\lt \delta \Rightarrow |2x^2-2|\lt \varepsilon\text{.}
Take, for example, f(x)=\mbox{sign} (x)\text{,} g(x)=-\mbox{sign} (x)\text{,} and a=0\text{.}
\displaystyle \ds \frac{2}{3}
\displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=\lim _{h\to 0}\frac{f'(x+h)+f'(x-h)}{2} and, since f' is continuous, \displaystyle \lim _{h\to 0}f'(x+h)=\lim _{h\to 0}f'(x-h)=f'(x)\text{.}