Section 6.1 Limits
These answers correspond to the problems in Section 1.2.
\(20\text{.}\)
Does not exist.
\(0\text{.}\)
\(100\text{.}\)
Does not exist. Consider the domain of \(g(x) =\sqrt{-x^2+20x-100}=\sqrt{-(x-10)^2}\text{.}\)
\(-8\ln 4\text{.}\)
\(0\text{.}\) Note the exponential function in the denominator.
\(\displaystyle \frac{3}{5}\text{.}\) Divide the numerator and denominator by the highest power.
\(\displaystyle \frac{5}{2}\text{.}\)
\(3\text{.}\)
\(2\text{.}\)
\(\ds \frac{a}{c}\text{.}\)
\(0\text{.}\) What is the value of \(3x+|1-3x|\) if \(x\lt \frac{1}{3}\text{?}\)
\(1\text{.}\)
\(1\text{.}\)
\(\displaystyle \frac{3}{\sqrt{2}}\text{.}\)
\(\displaystyle -\frac{2}{3}\text{.}\)
\(\ds -\frac{1}{2}\text{.}\)
\(\infty\text{.}\) Note that \(x^2-1=(x-1)(x+1)\text{.}\)
\(-2\text{.}\) Which statement is true for \(x\lt 1\text{:}\) \(|x-1|=x-1\) or \(|x-1|=1-x\text{?}\)
\(1.5\text{.}\)
\(-1.5\text{.}\)
No. The left-hand limit and the right-hand limit are not equal.
\(1\text{.}\)
\(\ds \frac{4}{5}\text{.}\)
\(\infty\text{.}\)
Does not exist
Does not exist.
\(0\text{.}\)
\(\displaystyle \frac{1}{8}\text{.}\) Rationalize the numerator.
\(\displaystyle \frac{1}{12}\text{.}\) Note that \(x-8=(\sqrt[3]{x}-2)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)\text{.}\)
\(\displaystyle \ds \frac{1}{16}\)
\(3\text{.}\)
\(a=b=4\text{.}\) Rationalize the numerator. Choose the value of \(b\) so that \(x\) becomes a factor in the numerator.
\(\ds e^4\text{.}\)
\(\ds e^{1/6}\text{.}\)
\(\ds \frac{1}{2}\text{.}\)
\(\displaystyle\frac{1}{12}\text{.}\) Note that \(x-8=(\sqrt[3]{x}-2)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\) Rationalize the numerator.
\(\displaystyle -\frac{3}{2}\text{.}\) Rationalize the numerator. Note that \(x\to -\infty\) and use the fact that if \(x\lt 0\) then \(x=-\sqrt{x^2}\text{.}\)
\(\displaystyle -\frac{1}{2}\text{.}\)
\(\displaystyle \frac{3}{2}\text{.}\)
Since the denominator approaches \(0\) as \(x\to -2\text{,}\) the necessary condition for this limit to exist is that the numerator approaches \(0\) as \(x\to -2\text{.}\) Thus we solve \(4b-30+15+b=0\) to obtain \(b=3\text{.}\) \(\ds \lim _{x\to -2}\frac{3x^2+15x+18}{x^2+x-2}=-1\text{.}\)
\(a=4\text{.}\) Write \(\ds f(x)=x+\frac{(a-1)x+5}{x+1}\text{.}\)
\(\displaystyle \lim _{x\to \infty}\frac{\ln x}{x}=0\text{.}\)
From \(\displaystyle \lim _{x\to 4}(x+2)=6\) and \(\displaystyle \lim _{x\to 4}(x^2-10)=6\text{,}\) by the Squeeze Theorem, it follows that \(\displaystyle \lim _{x\to 4}f(x)=6\text{.}\)
1.
Use the fact \(\ds -x^4\leq x^4\sin\left(\frac{1}{x}\right)\leq x^4\text{,}\) \(x\not= 0\text{.}\)
From the fact that \(\displaystyle \left| \sin (1/x)\right|\leq 1\) for all \(x\not= 0\) and the fact that the function \(\displaystyle y=e^x\) is increasing conclude that \(\displaystyle e^{-1}\leq e^{\sin (1/x)}\leq e\) for all \(x\not= 0\text{.}\) Thus \(\displaystyle e^{-1} \cdot \sqrt{x} \leq \sqrt{x}e^{\sin (1/x)} \leq e\cdot \sqrt{x}\) for all \(x>0\text{.}\) By the Squeeze Theorem, \(\displaystyle \lim _{x\to 0^+}\left( \sqrt{x}e^{\sin (1/x)}\right) =0\text{.}\)
\(0\text{.}\) Squeeze Theorem.
\(0\text{.}\) Squeeze Theorem.
\(0\text{.}\) Squeeze Theorem.
\(0\text{.}\) Squeeze Theorem.
\(0\text{.}\) Squeeze Theorem.
\(-\infty\text{.}\)
\(0\text{.}\)
\(2\text{.}\)
Does not exist.
\(\displaystyle \ds -\frac{2}{7}\)
\(\infty\text{.}\)
\(\displaystyle \frac{76}{45}\text{.}\) This is the case “\(0/0\)”. Apply L'Hospital's rule.
\(\ds \frac{a}{b}\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\) Write \(\displaystyle \frac{1}{2}\cdot \left( \frac{\sin x}{x}\right) ^{100}\cdot \frac{2x}{\sin 2x}\text{.}\)
7. Write \(\displaystyle 7\cdot \left( \frac{x}{\sin x}\right) ^{101}\cdot \frac{\sin 7x}{7x}\text{.}\)
7.
\(\displaystyle \frac{3}{5}\text{.}\) This is the case “\(0/0\)”. Apply L'Hospital's rule.
\(\displaystyle \frac{3}{5}\text{.}\)
\(0\text{.}\) Write \(\displaystyle x^2 \cdot \frac{x}{\sin x}\cdot \sin \left( \frac{1}{x^2}\right)\text{.}\)
Does not exist. \(\displaystyle \frac{\sin x}{2|x|}\cdot \frac{1}{\sqrt{\frac{\sin 4x}{4x}}}\text{.}\)
\(\displaystyle \frac{1}{2}\text{.}\) Write \(\displaystyle \frac{1-\cos x}{x^2}\cdot\frac{x}{\sin x}\text{.}\)
\(-1\text{.}\)
\(-1\text{.}\)
\(1\text{.}\) Substitute \(\displaystyle t=\frac{1}{x}\text{.}\)
\(0\text{.}\) This is the case \("\infty - \infty"\text{.}\) Write \(\displaystyle \frac{x- \sin x}{x\sin x}\) and apply L'Hospital's rule.
\(\displaystyle \ds \frac{1}{6}\)
\(0\text{.}\)
\(0\text{.}\) This is the case \(``0\cdot \infty ''\text{.}\) Write \(\displaystyle \frac{\ln \sin x}{\frac{1}{\sin x}}\) and apply L'Hospital's rule.
\(-2\text{.}\)
\(\infty\text{.}\)
\(0\text{.}\) This is the case \(``\infty /\infty ''\text{.}\) Apply L'Hospital's rule.
\(0\text{.}\)
\(0\text{.}\)
\(0\text{.}\)
\(1\text{.}\) This is the case \(``0/0''\text{.}\) Write \(\displaystyle \frac{\ln (1+x)}{x}\) and apply L'Hospital's rule.
\(\displaystyle \frac{3}{2}\text{.}\) Use properties of logarithms first.
\(\displaystyle \frac{3}{2}\text{.}\)
\(\ln 2\text{.}\) The denominator approaches 2.
\(0\text{.}\) This is the case “\(0/0\)”. Apply L'Hospital's rule.
\(\displaystyle -\frac{1}{\pi ^2}\text{.}\) Apply L'Hospital's rule twice.
\(\infty\text{.}\) This is the case "\(\infty - \infty\)". Write \(\displaystyle \frac{\sin x-x^2\cos x}{x^2\sin x}\) and apply L'Hospital's rule.
\(\ds \frac{1}{2}\text{.}\)
\(\displaystyle e^{\frac{1}{2}}\text{.}\) This is the case "\(\displaystyle 1^\infty\)". Write \(\displaystyle e^{\frac{\ln \cosh x}{x^2}}\text{.}\) Apply L'Hospital's rule and use the fact that the exponential function \(f(x)=e^x\) is continuous.
\(1\text{.}\)
\(\ds e^{-1/2}\text{.}\)
\(1\text{.}\) This is the case "\(\displaystyle 0^0\)". Write \(\displaystyle x^x=e^{x\ln x}=e^{\frac{\ln x}{x^{-1}}}\text{.}\) Apply L'Hospital's rule and use the fact that the exponential function \(f(x)=e^x\) is continuous.
\(1\text{.}\)
\(1\text{.}\)
\(1\text{.}\)
\(e\text{.}\)
\(1\text{.}\) This is the case "\(\infty^0\)".
\(1\text{.}\)
\(e^2\text{.}\)
\(\displaystyle e^3\text{.}\)
\(\displaystyle 0\text{.}\)
\(1\text{.}\) Write \(\displaystyle e^{x\ln \frac{x}{x+1}}=e^{x\ln x}\cdot e^{-x\ln (x+1)}\) and make your conclusion.
\(\ds e^{\frac{1}{e}}\text{.}\)
\(1\text{.}\)
\(1\text{.}\) Squeeze Theorem.
\(\displaystyle e^{-2}\text{.}\) Write \(\displaystyle \left( (1-2x)^{-\frac{1}{2x}}\right) ^{-2}\text{.}\)
\(\displaystyle e^{\frac{7}{5}}\text{.}\) Write \(\displaystyle \left( (1+7x)^{\frac{1}{7x}}\right) ^{\frac{7}{5}}\text{.}\)
\(\displaystyle e^{\frac{3}{8}}\text{.}\) Write \(\displaystyle \left( (1+3x)^{\frac{1}{3x}}\right) ^{\frac{3}{8}}\text{.}\)
\(\displaystyle e^{\frac{3}{2}}\text{.}\) Write \(\displaystyle \left( \left( 1+\frac{x}{2}\right) ^{\frac{2}{x}}\right) ^{\frac{3}{2}}\text{.}\)
\(10\text{.}\) Use the fact that \(\displaystyle L=\lim _{n\to \infty }x_n\) to conclude \(L^2=100\text{.}\) Can \(L\) be negative?
\(\displaystyle \frac{1}{2}\text{.}\) Write \(\displaystyle \frac{2\sin ^2 \frac{x}{2}}{x^2}\text{,}\) or use L'Hospital's rule.
\(0\text{.}\)
Does not exist. Note that the domain of \(f(x)=\arcsin x\) is the interval \([-1,1]\text{.}\)
\(\displaystyle \frac{1}{64}\text{.}\)
\(\displaystyle -\frac{1}{\pi }\text{.}\) Use L'Hospital's rule.
\(1\text{.}\) Divide the numerator and denominator by \(u\text{.}\)
\(e^{-2}\text{.}\)
\(\displaystyle \displaystyle \frac{1}{2}\)
\(\infty\text{.}\) Think, exponential vs. polynomial.
(a) \(2016\cdot 2^{2015}\text{;}\) (b) \(\displaystyle \frac{1}{2}\text{;}\) (c) \(\displaystyle \frac{7}{3}\text{;}\) (d) 1; (e) 0; (f) \(\displaystyle \frac{\sin 3 - 3}{27}\text{.}\)
(a) Does not exist. Consider \(\displaystyle \lim _{x\to 0}\frac{xf(x)}{x|x|}\text{;}\) (b) \(\displaystyle \frac{1}{3}\text{;}\) (c) \(\displaystyle -\frac{1}{4}\text{.}\) Note that \(x\lt 0\text{;}\) (d) \(0\text{.;}\) (e) \(e\text{.}\)
(a) \(\ds \frac{1}{4}\text{;}\) (b) \(-1\text{;}\) (c) \(0\text{.}\)
(a) \(-\infty\text{;}\) (b) 3; (c) 2; (d) 0.
Let \(\varepsilon >0\) be given. We need to find \(\delta =\delta (\varepsilon )>0\) such that \(|x-0|\lt \delta \Rightarrow |x^3-0|\lt \varepsilon\text{,}\) which is the same as \(|x|\lt \delta \Rightarrow |x^3|\lt \varepsilon\text{.}\) Clearly, we can take \(\delta =\sqrt[3]{\varepsilon }\text{.}\) Indeed, for any \(\varepsilon >0\) we have that \(|x|\lt \sqrt[3]{\varepsilon } \Rightarrow |x|^3=|x^3|\lt \varepsilon\) and, by definition, \(\displaystyle \lim _{x\to 0}x^3=0\text{.}\)
(c) For any \(\varepsilon >0\) there exists \(\delta =\delta (\varepsilon )>0\) such that \(|x-1|\lt \delta \Rightarrow |2x^2-2|\lt \varepsilon\text{.}\)
Take, for example, \(f(x)=\mbox{sign} (x)\text{,}\) \(g(x)=-\mbox{sign} (x)\text{,}\) and \(a=0\text{.}\)
\(\displaystyle \ds \frac{2}{3}\)
\(\displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=\lim _{h\to 0}\frac{f'(x+h)+f'(x-h)}{2}\) and, since \(f'\) is continuous, \(\displaystyle \lim _{h\to 0}f'(x+h)=\lim _{h\to 0}f'(x-h)=f'(x)\text{.}\)