Section 6.12 Exponential Growth and Decay
These answers correspond to the problems in Section 3.7.(a)\ds \frac{dA}{dt}=pA\text{,} A(0)=A_0\text{;} A=A_0e^{pt}\text{.} (b) Solve 15,000=10,000\cdot e^{4p}
(a) \ds \frac{dA}{dt}=k(M-A(t))\text{.} (b) A(t)=M-ce^{kt}\text{.} (c) It is given that M=100\text{,} A(0)=0\text{,} and A(100)=50\text{.} Hence \ds A(t)=100(1-e^{-\frac{t\ln 2}{100}})\text{.} The question is to solve \ds 75=100(1-e^{-\frac{t\ln 2}{100}}) for t\text{.} It follows that the student needs to study another 100 hours.
(a) The model is \ds C(t)=C_0e^{-\frac{t}{2.5}} where C_0=1 and the question is to solve \ds 0.5=e^{-\frac{t}{2.5}} for t\text{.} Hence t=2.5\ln2\approx 1.75 hours. (b) \ds C'(0)=-\frac{1}{2.5}=-\frac{2}{7} hours.
The percentage of alcohol in the blood at time t can be modelled as \ds c(t)=c_0 e^{-0.4t}\text{.} If c(t)=1 and c_0=2\text{,} it follows that \ds t=\frac{5\ln 2}{2}\approx 1.73 hours.
(b) \ds f(t)=e^{-\frac{t\ln 2}{5700}}\text{.} (c) The question is to solve \ds 0.15=e^{-\frac{t\ln 2}{5700}} for t\text{.} Hence the age of the skull is \ds t=-\frac{5700\ln 0.15}{\ln 2}\approx 15600 years.
The proportion of radioactive sample remaining after time t can be modelled as \ds m(t)=m_0 e^{-5t}\text{.} If m(t)=0.5\text{,} m_0=1\text{,} it follows that the half-life of the particle is t=\frac{\ln 2}{5}\approx 0.138 units of time.
(a) The model is \ds m(t)=10e^{-kt} where t is in years, m(t) is in kilograms, and k is a constant that should be determined from the fact that m(24110)=5\text{.} Hence \ds k=-\frac{\ln 2}{24110} and m(t)=10e^{-\frac{t\ln 2}{24110}}\text{.} (b) m(1000)=10e^{-\frac{\ln 2}{24.11}}\approx 9.716 kilograms. (c) We solve \ds 1=10e^{-\frac{t\ln 2}{24110}} to get \ds t=24110\frac{\ln 10}{\ln 2}\approx 80091.68 years.
The model is \ds A=A(0)e^{-kt}\text{.} It is given that A(0)=1 kg and A(6)=0.027 kg. Hence \ds A(t)= e^{\frac{t\ln 0.0027}{6}}\text{.} It follows that at 3:00 there are A(2)=e^{\frac{\ln 0.0027}{3}} \approx 0.1392476650 kg of substance X\text{.}
The model is \ds P=P(t)=P_0e^{kt} where k is a constant, P_0 is the initial population and t is the time elapsed. It is given that \ds 10P_0=P_0e^{10k} which implies that \ds k=\frac{\ln 10}{10}\text{.} The question is to solve \ds 2=e^{\frac{t\ln 10}{10}} for t\text{.} Hence \ds t=\frac{10\ln 2}{\ln 10}\approx 3.01 hours.
(a) The model is \ds P=500e^{kt}\text{.} From \ds 8000=500e^{3k} it follows that \ds k=\frac{4\ln 2}{3}\text{.} Thus the model is \ds P=500e^{\frac{4t\ln 2}{3}}\text{.} (b) 128000 bacteria. (c) Solve \ds 10^6=500e^{\frac{4t\ln 2}{3}} for t\text{.} It follows that \ds t=\frac{3(4\ln 2+3\ln 5)}{4\ln 2}\approx 4.7414 hours.
\displaystyle 20158
(a) The model is \ds P(t)=10e^{kt} where t is time in hours. From 40=10e^{\frac{k}{4}} it follows that k=4\ln 4\text{.} Hence P(3)=10e^{12\ln 4}=167,772,160 bacteria. (b) 3.32 hours.
(a) \displaystyle \frac{dP}{dt}=kP\text{;} (b) \displaystyle P=160e^{t\ln \frac{3}{2}}\text{;} (c) P(0)=160 bacteria; (d) \displaystyle \frac{dP}{dt}(0)=160\ln \frac{3}{2}
The model is \ds P(t)=500e^{kt} where t is time in years. From P(2)=750 it follows that \ds k=\frac{\ln 3-\ln 2}{2}\text{.} Thus \ds P(500)=500e^{250(\ln 3-\ln 2)}=5.27\cdot 10^{46}\text{.}
Use Newton's Law of Cooling. t\approx 20.2 minutes.
(a) \ds \left. \frac{dT}{dt}\right| _{T=80^0}=-0.09\cdot(80-20)=-5.4\ ^0C/min. (b) Note that 6 seconds should be used as 0.1 minutes. From T\approx 80- 5.4\Delta T=80-5.4\cdot 0.1 it follows that the change of temperature will be \ds T-80\approx -0.54^0C. (c) \ds t= -\frac{100}{9}\ln \frac{9}{16}\approx 6.4 minutes. Find the function T=T(t) that is the solution of the initial value problem \ds \frac{dT}{dt}=-0.09(T-20)\text{,} T(0)=90\text{,} and then solve the equation T(t)=65 for t\text{.}
The model is \ds \frac{dT}{dt}=k(T-32) where T=T(t) is the temperature after t minutes and k is a constant. Hence \ds T=32+(T_0-32)e^kt where T_0 is the initial temperature of the drink. From 14=32+(T_0-32)e^{25k} and 20=32+(T_0-32)e^{50k} it follows \ds \frac{3}{2}=e^{-25k} and \ds k=-\frac{1}{25}\ln \frac{3}{2}\text{.} Answer: T_0=5^0C.
t\approx 4.5 minutes.
t\approx 2.63 hours.