MENU

Qihuang Zhang, McGill University

Title: Zero-Inflated Poisson Models with Measurement Error in the Response
Date: Friday, October 4th, 2024
Time: 1:15PM (PDT)
Location: ASB 10900

Abstract:

Zero-inflated count data arise frequently from genomics studies. Analysis of such data is often based on a mixture model which facilitates excess zeros in combination with a Poisson distribution, and various inference methods have been proposed under such a model. Those analysis procedures, however, are challenged by the presence of measurement errors in count responses. In this talk, I will present a new measurement error model to describe error-contaminated count data. We show that ignoring the measurement error effects in the analysis may generally lead to invalid inference results, and meanwhile, we identify situations where ignoring measurement error can still yield consistent estimators. Furthermore, we propose a Bayesian method to address the effects of measurement error under the zero-inflated Poisson model and discuss the identifiability issues. We develop a data-augmentation algorithm that is easy to implement. Simulation studies are conducted to evaluate the performance of the proposed method. We apply our method to analyze the data arising from a prostate adenocarcinoma genomic study.