next up previous

STAT 330 Lecture 15

Reading for Today's Lecture: 6.2, 8.1, 8.2

Goals of Today's Lecture:

Today's notes

Power, tex2html_wrap_inline96 , Sample Size

Definition: the power function of a hypothesis test procedure is

displaymath98

Recall: Type I error is incorrect rejection. Type 2 error is incorrect acceptance.

Definition: The level of a test is the largest probability of rejection for tex2html_wrap_inline100 in the null hypothesis:

displaymath102

Typically if the null hypothesis is like tex2html_wrap_inline104 the value of tex2html_wrap_inline106 is actually tex2html_wrap_inline108 , that is, the edge of the null hypothesis gives the highest risk of incorrect rejection.

Definition: The probability of a type two error is a function tex2html_wrap_inline110 defined for tex2html_wrap_inline112 by

displaymath114

Thus

displaymath116

for tex2html_wrap_inline100 not in the Null.

A good test procedure has

Example 1: tex2html_wrap_inline132 iid tex2html_wrap_inline134 . {WE PRETEND tex2html_wrap_inline136 IS KNOWN.) To test tex2html_wrap_inline138 vs tex2html_wrap_inline140 at level tex2html_wrap_inline106 : reject if

displaymath144

Now

eqnarray25

which is the area to the right of

displaymath146

under the standard normal curve. Here is a graph of the power function:

Power and Sample Size Determination

Scenarios:

In order to determine n you must know:
  1. tex2html_wrap_inline106
  2. tex2html_wrap_inline96
  3. Correct alternative distribution, i.e., the value of tex2html_wrap_inline154 .

Catalyst example: tex2html_wrap_inline132 will be yields for new (catalyzed) method. Assume old method had:

Assume new method has mean yield tex2html_wrap_inline162 and the same SD 3%.

We will test tex2html_wrap_inline164 against tex2html_wrap_inline140 at level tex2html_wrap_inline168 and reject if

displaymath170

How big should n be? To answer we need to more ingredients:

Suppose manager says tex2html_wrap_inline182 would be an important improvement and that a tex2html_wrap_inline184 % error rate would be tolerable if tex2html_wrap_inline182 . We then solve:

eqnarray53

which is the area to the left of

displaymath190

But the area is 10% when

displaymath192

so that the general formula is

displaymath194

or, solving

displaymath196

or

displaymath198

In our example
tex2html_wrap_inline168 tex2html_wrap_inline202
tex2html_wrap_inline204 tex2html_wrap_inline206
tex2html_wrap_inline208 tex2html_wrap_inline182 tex2html_wrap_inline212

so that

displaymath214

We round up to n=20 to get the type II error rate to be definitely under 10%.


next up previous



Richard Lockhart
Fri Jan 30 11:18:04 PST 1998