Chapter Contents |
Previous |
Next |
HISTOGRAM Statement |
The following entries provide detailed descriptions of options for the HISTOGRAM statement.
where and
lower threshold parameter (lower endpoint parameter) scale parameter shape parameter shape parameter h = width of histogram interval
proc capability; histogram length / beta(theta=50 sigma=25); run;
proc capability; histogram length / kernel(c=0.5 1.0 mise); run;
proc capability; histogram length / kernel(c=1 2 3 k=normal quadratic); run;
where
threshold parameter scale parameter h = width of histogram interval
proc capability; histogram / exponential(theta=10 l=2 color=red); run;
proc capability; histogram length / normal(fill) cfill=green pfill=solid; run;Depending on the area to be filled (outside or between the specification limits), you can specify the color and pattern with options in the SPEC statement and HISTOGRAM statement, as summarized in the following table:
Area Under Curve | Statement | Option |
between specification | HISTOGRAM | CFILL=color |
limits | HISTOGRAM | PFILL=pattern |
left of lower | SPEC | CLEFT=color |
specification limit | SPEC | PLEFT=pattern |
right of upper | SPEC | CRIGHT=color |
specification limit | SPEC | PRIGHT=pattern |
where
threshold parameter
scale parameter
shape parameter
h = width of histogram interval
The parameter for the gamma distribution
must be less than the minimum data value. You can
specify with the THETA= gamma-option.
The default value for is 0.
If you specify THETA=EST, a maximum likelihood estimate
is computed for .In addition,
the gamma distribution has a shape parameter and a scale parameter . You can specify these
parameters with the ALPHA= and SIGMA= gamma-options.
By default, maximum likelihood estimates are computed
for and . For example, the following
statements fit a gamma curve with and with maximum
likelihood estimates for and :proc capability; histogram length / gamma(theta=4); run;Note that the maximum likelihood estimate of is calculated iteratively using the Newton-Raphson approximation. The ALPHADELTA=, ALPHAINITIAL=, and MAXITER= gamma-options control the approximation.
proc capability; histogram length / kernel(k=quadratic); run;
proc capability; histogram length / kernel(c=0.5 1.0 1.5 k=normal quadratic); run;
FILL | specifies that the area under the curve is to be filled |
COLOR= | specifies the color of the curve |
L= | specifies the line style for the curve |
W= | specifies the width of the curve |
K= | specifies the type of kernel function |
C= | specifies the smoothing parameter |
SYMBOL= | specifies the character used to plot the kernel density curve if the histogram is produced on a line printer |
whereNote that the lognormal distribution is also referred to as the SL distribution in the Johnson system of distributions.
threshold parameter scale parameter shape parameter h = width of histogram interval
proc capability; histogram length / lognormal; run;The LOGNORMAL option can appear only once in a HISTOGRAM statement. Table 4.2 and Table 4.6 list options that you can specify with the LOGNORMAL option. See Example 4.2 and "Formulas for Fitted Curves".
proc capability; histogram length / gamma(theta=3 midpercents) run;
midpoints=2 to 10 by 0.5then all of the observations and specification limits must fall between 1.75 and 10.25 (otherwise, a default list of midpoints is used).
proc capability; histogram length / midpoints=20 to 80 by 10 haxis=axis1; axis1 length=6 in order=10 20 30 40 50 60 70 80 90; run;
where
mean
standard deviation
h = width of histogram interval
Note that the normal distribution is also referred to as
the SN distribution in the Johnson system of distributions.
proc capability; histogram length / normal(mu=14 sigma=0.05); run;
proc capability; histogram length / lognormal(percents=1 3 5 95 97 99); run;
|
where
threshold parameter
scale parameter
shape parameter
shape parameter
h = width of histogram interval
The SB distribution is bounded below by the parameter
and above by the value .The parameter
must be less than the minimum data value. You can
specify with the THETA= SB-option,
or you can request that be estimated
with the THETA = EST SB-option.
The default value for is zero.
The sum must be greater than the maximum
data value.
The default value for is one.
You can specify with the SIGMA= SB-option,
or you can request that be estimated
with the SIGMA = EST SB-option.
You can
specify with the DELTA= SB-option,
and you can
specify with the GAMMA= SB-option.
Note that the SB-options are given in
parentheses after the SB option.
proc capability; histogram length / sb; histogram length / sb( theta=est sigma=est ); histogram length / sb( theta=0.5 sigma=8.4 delta=0.8 gamma=-0.6 ); run;The first HISTOGRAM statement fits an SB distribution with default values of and and with percentile-based estimates for and .The second HISTOGRAM statement estimates all four parameters with the method of percentiles. The third HISTOGRAM statement displays an SB curve with specified values for all four parameters.
Distribution Keyword | SIGMA= Specifies | Default Value | Alias |
BETA | scale parameter | 1 | SCALE= |
EXPONENTIAL | scale parameter | maximum likelihood estimate | SCALE= |
GAMMA | scale parameter | maximum likelihood estimate | SCALE= |
LOGNORMAL | shape parameter | maximum likelihood estimate | SHAPE= |
NORMAL | scale parameter | standard deviation | |
SB | scale parameter | 1 | SCALE= |
SU | scale parameter | percentile-based estimate | |
WEIBULL | scale parameter | maximum likelihood estimate | SCALE= |
whereYou can specify the parameters with the THETA=, SIGMA=, DELTA=, and GAMMA= SU-options, which are enclosed in parentheses after the SU option. If you do not specify these parameters, they are estimated.
location parameter scale parameter shape parameter shape parameter h = width of histogram interval
proc capability; histogram length / su; histogram length / su( theta=0.5 sigma=8.4 delta=0.8 gamma=-0.6 ); run;The first HISTOGRAM statement estimates all four parameters with the method of percentiles. The second HISTOGRAM statement displays an SU curve with specified values for all four parameters.
proc capability; histogram length / normal(w=3); run;The default is 1.
where threshold parameter scale parameter c = shape parameter (c >0) h = width of histogram intervalThe parameter must be less than the minimum data value. You can specify with the THETA= Weibull-option. The default value for is zero. If you specify THETA=EST, a maximum likelihood estimate is computed for .You can specify and c with the SIGMA= and C= Weibull-options. By default, maximum likelihood estimates are computed for c and . For example, the following statements fit a Weibull distribution with and with maximum likelihood estimates for and c:
proc capability; histogram length / weibull(theta=15); run;
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.