Chapter Contents |
Previous |
Next |
Language Reference |
Value of opt[4] | Update Method |
1 | Dual BFGS update of the Cholesky factor of the Hessian matrix. |
This is the default. | |
2 | Dual DFP update of the Cholesky factor of the Hessian matrix |
In addition to the standard iteration history, the NLPDD routine prints the following information:
The following statements invoke the NLPDD subroutine to solve the constrained Betts optimization problem (see "Constrained Betts Function" ). The iteration history is shown in Figure 17.1.
proc iml; start F_BETTS(x); f = .01 * x[1] * x[1] + x[2] * x[2] - 100.; return(f); finish F_BETTS; con = { 2. -50. . ., 50. 50. . ., 10. -1. 1. 10.}; x = {-1. -1.}; optn = {0 1}; call nlpdd(rc,xres,"F_BETTS",x,optn,con); quit;
Double Dogleg Optimization Dual Broyden - Fletcher - Goldfarb - Shanno Update (DBFGS) Without Parameter Scaling Gradient Computed by Finite Differences Parameter Estimates 2 Lower Bounds 2 Upper Bounds 2 Linear Constraints 1 Optimization Start Active Constraints 0 Objective Function -98.5376 Max Abs Gradient Element 2 Radius 1 Function Active Objective Iter Restarts Calls Constraints Function 1 0 2 0 -99.54678 2 0 3 0 -99.59120 3 0 5 0 -99.90252 4 0 6 1 -99.96000 5 0 7 1 -99.96000 6 0 8 1 -99.96000 Objective Max Abs Slope of Function Gradient Search Iter Change Element Lambda Direction 1 1.0092 0.1346 6.012 -1.805 2 0.0444 0.1279 0 -0.0228 3 0.3113 0.0624 0 -0.209 4 0.0575 0.00432 0 -0.0975 5 4.66E-6 0.000079 0 -458E-8 6 1.559E-9 0 0 -16E-10 Optimization Results Iterations 6 Function Calls 9 Gradient Calls 8 Active Constraints 1 Objective Function -99.96 Max Abs Gradient Element 0 Slope of Search Direction -1.56621E-9 Radius 1 GCONV convergence criterion satisfied.
Figure 17.1: Iteration History for the NLPDD Subroutine
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.