Student Seminar

TBA

Matthew Leighton, SFU Physics
Location: Online

Friday, 28 January 2022 01:30PM PST
Facebook
Twitter
LinkedIn
Reddit
SMS
Email
Copy

Synopsis

Motor-driven intracellular transport of organelles, vesicles, and other molecular cargo is a highly collective process. An individual cargo is often pulled by a team of transport motors, with numbers ranging from only a few to several hundred. We explore the behavior of these systems using a stochastic model for transport of molecular cargo by an arbitrary number N of motors obeying linear Langevin dynamics, finding analytic solutions for the N-dependence of the velocity, precision of forward progress, energy flows between different system components, and efficiency. In two opposing regimes, we show that these properties obey simple scaling laws with N. Finally, we explore trade-offs between performance metrics as N is varied, providing insight into how different numbers of motors might be well-matched to distinct contexts where different performance metrics are prioritized.