Biophysics Journal Club

Universality of clone dynamics during tissue development

Monday, 04 June 2018 12:00PM PDT
Facebook
Twitter
LinkedIn
Reddit
SMS
Email
Copy
 
Biophysics Journal Club
 
CHAPIN KOROSEC
SFU Physics
 
Universality of clone dynamics during tissue development
 
Jun 04, 2018 at 12PM
 

Synopsis

S RULANDS ET AL., NAT. PHYS. 14, 469–474 (2018)

The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics-archive in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics-archive.