Biophysics Journal Club

Motor-like Properties of Nonmotor Enzymes

Monday, 23 July 2018 12:00PM PDT
Facebook
Twitter
LinkedIn
Reddit
SMS
Email
Copy
 
Biophysics Journal Club
 
MIRANDA LOUWERSE
SFU Physics
 
Motor-like Properties of Nonmotor Enzymes
 
Jul 23, 2018 at 12PM
 

Synopsis

Molecular motors are thought to generate force and directional motion via nonequilibrium switching between energy surfaces. Because all enzymes can undergo such switching, we hypothesized that the ability to generate rotary motion and torque is not unique to highly adapted biological motor proteins but is instead a common feature of enzymes. We used molecular dynamics simulations to compute energy surfaces for hundreds of torsions in three enzymes—adenosine kinase, protein kinase A, and HIV-1 protease—and used these energy surfaces within a kinetic model that accounts for intersurface switching and intrasurface probability flows. When substrate is out of equilibrium with product, we find computed torsion rotation rates up ∼140 cycles s−1, with stall torques up to ∼2 kcal mol−1 cycle−1, and power outputs up to ∼50 kcal mol−1 s−1. We argue that these enzymes are instances of a general phenomenon of directional probability flows on asymmetric energy surfaces for systems out of equilibrium. Thus, we conjecture that cyclic probability fluxes, corresponding to rotations of torsions and higher-order collective variables, exist in any chiral molecule driven between states in a nonequilibrium manner; we call this the “Asymmetry-Directionality” conjecture. This is expected to apply as well to synthetic chiral molecules switched in a nonequilibrium manner between energy surfaces by light, redox chemistry, or catalysis.