Section 3.4 Computing Limits: Algebraically
ΒΆSubsection 3.4.1 Properties of limits
We begin by deriving a handful of theorems to give us the tools to compute many limits without explicitly working with the precise definition of a limit.Theorem 3.9. Limit Properties.
Suppose that limxβaf(x)=L and limxβag(x)=M, and k is some constant. Then
limxβakf(x)=klimxβaf(x)=kL
limxβa(f(x)+g(x))=limxβaf(x)+limxβag(x)=L+M
limxβa(f(x)βg(x))=limxβaf(x)βlimxβag(x)=LβM
limxβa(f(x)g(x))=limxβaf(x)β limxβag(x)=LM
limxβaf(x)g(x)=limxβaf(x)limxβag(x)=LM if Mβ 0.
Example 3.10. Limit Properties.
Compute limxβ1x2β3x+5xβ2.
If we apply the theorem in all its gory detail, we get
Example 3.11. Zero Denominator.
Compute limxβ1x2+2xβ3xβ1.
We can't simply plug in \(x=1\) because that makes the denominator zero. However:
Example 3.12. Another Zero Denominator.
Compute
We can't simply plug in \(x = 0\) because that makes the denominator zero. Let's simplify algebraically first to get
As \(x\) approaches zero from either the left or right side, the value of \(x^{2}\) approaches zero and so \(\dfrac{1}{x^{2}}\) approaches infinity. In other words, \(\lim_{x \to 0} \dfrac{x}{x^{3}}\) does not exist since it does not approach a real number.
Theorem 3.13. Limit of Composition.
Suppose that limxβag(x)=L and limxβLf(x)=f(L). Then
Theorem 3.14. Continuity of Roots.
Suppose that n is a positive integer. Then
provided that a is positive if n is even.
Example 3.15. Rationalizing.
Compute limxββ1βx+5β2x+1.
At the very last step we have used Theorems 3.13 and 3.14.
Example 3.16. Left and Right Limit.
Evaluate limxβ0+x|x|.
The function \(f(x)=x/|x|\) is undefined at 0; when \(x>0\text{,}\) \(|x|=x\) and so \(f(x)=1\text{;}\) when \(x\lt 0\text{,}\) \(|x|=-x\) and \(f(x)=-1\text{.}\) Thus
while
The limit of \(f(x)\) must be equal to both the left and right limits; since they are different, the limit \(\ds \lim_{x\to 0}{x\over|x|}\) does not exist.
Example 3.17. Limit of Piecewise-defined Function.
Let
Evaluate limxβ1g(x).
The domain of \(g\) is the set of all real numbers. From the graph shown below, we see that \(g(x)\) can be made as close to \(4\) as we please by taking \(x\) sufficiently close to \(1\text{.}\) Therefore,
Observe that \(g(1) = 2\text{,}\) which does not equal the value of the limit of the function \(g\) as \(x\) approaches \(1\text{.}\) The value of \(g(x)\) at \(x = 1\) has no bearing on the existence or value of the limit as \(g\) approaches \(1\text{.}\)
Exercises for Section 3.4.
Exercise 3.4.1.
Compute the limits. If a limit does not exist, explain why.
-
\(\ds \lim_{x\to 3}{x^2+x-12\over x-3}\)
Answer\(\lim\limits_{x \to 3} \dfrac{x^{2} + x - 12}{x - 3} = \lim\limits_{x \to 3} \dfrac{(x-3)(x+4)}{x-3} = \lim\limits_{x \to 3} x + 4 = 7\text{.}\) -
\(\ds \lim_{x\to 1}{x^2+x-12\over x-3}\)
Answer\(\lim\limits_{x \to 1} \dfrac{x^{2} + x - 12}{x - 3} = \lim\limits_{x \to 1} x + 4 = 5\text{.}\) -
\(\ds \lim_{x\to -4}{x^2+x-12\over x-3}\)
Answer\(\lim\limits_{x \to -4} \dfrac{x^{2} + x - 12}{x - 3} = \lim\limits_{x \to -4} x + 4 = 0\text{.}\) -
\(\ds \lim_{x\to 2} {x^2+x-12\over x-2}\)
Answer\(\lim\limits_{x \to 2^{+}} \dfrac{x^{2} + x - 12}{x - 2} = \dfrac{-6}{+0} = - \infty\text{.}\) \(\lim\limits_{x \to 2^{-}} \dfrac{x^{2} + x - 12}{x - 2} = \dfrac{-6}{-0} = + \infty\text{.}\) Therefore, \(\lim\limits_{x \to 2} \dfrac{x^{2} + x - 12}{x - 2}\) DNE.
-
\(\ds \lim_{x\to 1} {\sqrt{x+8}-3\over x-1}\)
Answer\(\lim\limits_{x\to 1} \frac{\sqrt{x+8}-3}{x-1} = \lim\limits_{x\to 1} \frac{\sqrt{x+8}-3}{x-1} \cdot \frac{\sqrt{x+8}+3}{\sqrt{x+8}+3} = \lim\limits_{x\to 1} \frac{(x-1)}{(x-1)(\sqrt{x+8}_3)} = \frac{1}{6}\) -
\(\ds \lim_{x\to 0^+} \sqrt{{1\over x}+2} - \sqrt{1\over x}\)
Answer\(\lim\limits_{x\to 0^+} \sqrt{\frac{1}{x}+2}-\sqrt{\frac{1}{x}} = \lim\limits_{x\to 0^+} \frac{2}{\sqrt{\frac{1}{x}+2}+\sqrt{\frac{1}{x}}} = \lim\limits_{x\to 0^+} \frac{2\sqrt{x}}{\sqrt{1+2x}+1} = \frac{0}{2} = 0\) -
\(\ds\lim _{x\to 2} 3\)
Answer\(\lim\limits_{x\to 2} 3 = 3\) -
\(\ds\lim _{x\to 4 } 3x^3 - 5x\)
Answer\(\lim\limits_{x\to 4}(3x^3-5x) = 3(4^3)-5(4) = 172\) -
\(\ds \lim _{x\to 0 } {4x - 5x^2\over x-1}\)
Answer\(\lim\limits_{x\to 0} \frac{4x-5x^2}{x-1} = \frac{0}{-1} = 0\) -
\(\ds\lim _{x\to 1 } {x^2 -1 \over x-1 }\)
Answer\(\lim\limits_{x\to 1}\dfrac{x^2-1}{x-1} = \lim\limits_{x\to 1}\dfrac{(x-1)(x+1)}{x-1} = \lim\limits_{x\to 1} (x+1) = 2\) -
\(\ds\lim _{x\to 0^ + } {\sqrt{2-x^2 }\over x}\)
Answer\(\lim\limits_{x\to 0^+} \dfrac{\sqrt{2-x^2}}{x} = \lim\limits_{x\to 0^+}\dfrac{\frac{\sqrt{2-x^2}}{x}}{\frac{x}{x}} = \lim\limits_{x\to 0^+} \dfrac{\sqrt{\frac{2-x^2}{x^2}}}{\frac{x}{x}} = \lim\limits_{x\to 0^+}\sqrt{\frac{2}{x^2}-1} = \infty\text{.}\) -
\(\ds\lim _{x\to 0^ + } {\sqrt{2-x^2}\over x+1}\)
Answer\(\lim\limits_{x\to 0^+} \frac{\sqrt{2-x^2}}{x+1} = \frac{\sqrt{2-0}}{1} = \sqrt{2}\) -
\(\ds\lim _{x\to a } {x^3 -a^3\over x-a}\)
Answer\(\lim\limits_{x\to a} \dfrac{x^3-a^3}{x-a} = \lim\limits_{x \to a} \dfrac{(x-a)(a^2+ax+x^2)}{x-a} = 3a^2\) -
\(\ds\lim _{x\to 2 } (x^2 +4)^3\)
Answer\(\lim\limits_{x\to 2} (x^2+1)^3 = 5^3\)
Exercise 3.4.2.
Let \(f(x)=\left\{ \begin{array}{cc} 1 \amp \text{ if } x\neq 0 \\ 0 \amp \text{ if } x=0 \end{array} \right.\) and \(g(x)=0\text{.}\) What are the values of \(L=\lim\limits_{x\to 0}g(x)\) and \(M=\lim\limits_{x\to L}f(x)\text{?}\) Is it true that \(\lim\limits_{x\to 0}f(g(x))=M\text{?}\) What are some noteworthy differences between this example and Theorem 3.13?
AnswerGraphically, we see that \(g(x)\) is the line which lies along the \(x\)-axis, and \(f(x)\) is the piecewise-defined function shown below.
Therefore, we find:
and so
But,
The difference between this example and Theorem 3.13 is that we do not have \(\lim\limits_{x\to 0} f(x) = f(0)\text{.}\)
Exercise 3.4.3.
Sketch the graph of the given function \(f\) and evaluate \(\lim\limits_{x \to a} f(x)\text{,}\) if it exists, for the given values of \(a\text{.}\)
-
\begin{equation*} f(x) = \begin{cases} x + 1 \amp \text{ if } x \leq 0 \\ 1 \amp \text{ if } x > 0 \end{cases} ,\ a = 0 \end{equation*}Answer\begin{equation*} \begin{split} \amp \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x + 1) = 1 \amp \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (1) = 1 \end{split} \end{equation*}
Therefore \(\lim\limits_{x \to 0} f(x)= 1\text{.}\)
-
\begin{equation*} f(x) = \begin{cases} x \amp \text{ if } x \lt 1 \\ -1 \amp \text{ if } x = 1 \\ -x + 2 \amp \text{ if } x > 1 \end{cases} , \ a = 1 \end{equation*}Answer\begin{equation*} \begin{split} \amp \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (-x+2) = 1 \amp \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1 \end{split} \end{equation*}
Therefore \(\lim\limits_{x \to 1} f(x)= 1\text{.}\)
-
\begin{equation*} f(x) = \begin{cases} \lvert x \lvert \amp \text{ if } x \neq 0 \\ 2 \amp \text{ if } x = 0 \end{cases} ,\ a = 0 \end{equation*}Answer\begin{equation*} \begin{split} \amp \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} x = 0 \amp \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-x) = 0 \end{split} \end{equation*}
Therefore \(\lim\limits_{x \to 0} f(x)= 0\text{.}\)
Exercise 3.4.4.
Find the indicated limit given that
-
\(\lim\limits_{x \to a} \left[p(x) - q(x) \right]\)
Answer\(\lim\limits_{x \to a} [ p(x) -q(x)] = \lim\limits_{x \to a} p(x) - \lim\limits_{x \to a} q(x) = 3-4=-1\) -
\(\lim\limits_{x \to a} \sqrt{q(x)}\)
Answer\(\lim\limits_{x \to a} \sqrt{q(x)} = \sqrt{\lim\limits_{x \to a} q(x)} = \sqrt{4} = 2\) -
\(\lim\limits_{x \to a} \left[\dfrac{2p(x) - q(x)}{p(x)q(x)} \right]\)
Answer\(\lim\limits_{x \to a} \left[ \dfrac{2p(x)-q(x)}{p(x)q(x)} \right] = \dfrac{2\lim\limits_{x \to a} p(x) - \lim\limits_{x \to a} q(x)}{ \lim\limits_{x \to a} p(x) \cdot \lim\limits_{x \to a} q(x)} = \dfrac{2(3)-4}{3 \cdot 4} = \dfrac{2}{12} = \dfrac{1}{6}\)
Exercise 3.4.5.
Find the indicated limit, if it exists.
-
\(\lim\limits_{x \to 0} \dfrac{x^{3}-x^2}{x^2}\)
Answer\(\lim\limits_{x\to 0} \dfrac{x^3-x^2}{x^2} = \lim\limits_{x\to 0} (x-1) = -1\) -
\(\lim\limits_{x \to 1} \dfrac{x^2}{x(x-1)}\)
Answer\(\lim\limits_{x\to 1} \dfrac{x^2}{x(x-1)} = \lim\limits_{x\to 1} \dfrac{x}{(x-1)} = \lim\limits_{x\to 1} \dfrac{1}{1-\frac{1}{x}}\) DNE -
\(\lim\limits_{x \to 1} \dfrac{x-1}{\sqrt{x}-1}\)
Answer\(\lim\limits_{x\to 1} \dfrac{x-1}{\sqrt{x}-1} = \lim\limits_{x\to 1} \dfrac{x-1}{\sqrt{x}-1} \cdot \dfrac{\sqrt{x}+1}{\sqrt{x}+1} = \lim\limits_{x\to 1}\dfrac{(x-1)(\sqrt{x}+1)}{x-1} = \lim\limits_{x\to 1}\left(\sqrt{x}+1\right) = 2\) -
\(\lim\limits_{x \to -1} \dfrac{x+1}{x^{3}+1}\)
Answer\(\lim\limits_{x\to -1} \dfrac{x+1}{x^3+1} = \lim\limits_{x\to -1} \dfrac{x+1}{(x+1)(x^2-x+1)} = \lim\limits_{x\to -1} \dfrac{1}{x^2-x+1} = \dfrac{1}{3}\) -
\(\lim\limits_{x \to 1} \dfrac{x^{3}-3x+2}{x^{3}-x^{2}-x+1}\)
Answer\(\lim\limits_{x\to 1} \dfrac{x^3-3x+2}{x^3-x^2-x+1} = \lim\limits_{x\to 1}\dfrac{(x-1)^2(x+2)}{(x-1)^2(x+1)} = \lim\limits_{x\to 1} \dfrac{x+2}{x+1} = \dfrac{3}{2}\) -
\(\lim\limits_{x \to 0} \dfrac{x}{\sqrt{x+1}-1}\)
Answer\begin{equation*} \begin{split} \lim\limits_{x\to 0} \dfrac{x}{\sqrt{x+1}-1} \amp= \lim\limits_{x\to 0} \dfrac{x}{\sqrt{x+1}-1} \cdot \dfrac{\sqrt{x+1}+1}{\sqrt{x+1}+1} \\ \amp= \lim\limits_{x\to 0} \dfrac{x(\sqrt{x+1}+1)}{x} = \lim\limits_{x\to 0} \left(\sqrt{x+1}+1\right) = 2\end{split} \end{equation*}
Exercise 3.4.6.
Find the indicated one-sided limit, if it exists.
-
\(\lim\limits_{x \to 1^{-}} \left(2x + 4\right)\)
Answer\(\lim\limits_{x\to 1^-} (2x+4) = 2(1)+4 = 6\) -
\(\lim\limits_{x \to 2^{+}} \dfrac{x-3}{x+2}\)
Answer\(\lim\limits_{x\to 2^+} \dfrac{x-3}{x+2} = \dfrac{(2-3)}{(2+2)} = \dfrac{-1}{4}\) -
\(\lim\limits_{x \to 0^{-}} \dfrac{1}{x}\)
Answer\(\lim\limits_{x\to 0^-} \dfrac{1}{x} = -\infty\text{.}\) We refer to the graph of \(\dfrac{1}{x}\text{:}\) -
\(\lim\limits_{x \to 0^{-}} \dfrac{x-1}{x^{2}+1}\)
Answer\(\lim\limits_{x\to 0^-} \dfrac{x-1}{x^2+1} = \dfrac{0-1}{0+1} = -1\) -
\(\lim\limits_{x \to 1^{+}} \dfrac{1+x}{1-x}\)
AnswerSince \(\lim\limits_{x\to 1^+} (1+x) = 2\) and \(\lim\limits_{x\to 1^+} \dfrac{1}{(1-x)} = -\infty\text{,}\) we have \(\lim\limits_{x\to 1^+} \dfrac{1+x}{1-x} = -\infty\) -
\(\lim\limits_{x \to 0^{+}} f(x)\) and \(\lim\limits_{x \to 0^{-}} f(x)\) where
\begin{equation*} f(x) = \begin{cases} 2x \amp \text{ if } x \geq 0 \\ x^{2} \amp \text{ if } x \lt 0 \end{cases} \end{equation*}Answer\(\lim\limits_{x\to 0^+} f(x) = \lim\limits_{x\to 0^+} 2x = 0\text{,}\) and \(\lim\limits_{x\to 0^-} f(x) = \lim\limits_{x\to 0^-} x^2 = 0\) -
\(\lim\limits_{x \to 0^{+}} f(x)\) and \(\lim\limits_{x \to 0^{-}} f(x)\) where
\begin{equation*} f(x) = \begin{cases} -x+1 \amp \text{ if } x > 0 \\ 2x+3 \amp \text{ if } x \leq 0 \end{cases} \end{equation*}Answer\(\lim\limits_{x\to 0^+} f(x) = \lim\limits_{x\to 0^+} (-x+1)=1\)\(\lim\limits_{x\to 0^-} f(x) = \lim\limits_{x\to 0^-} (2x+3)=3\)