Exercises 2.2 Derivatives
Recall that if \(f^\prime(a)\) exists then
1.
Assume that \(f(x)\) is a real-valued function defined for all real numbers \(x\) on an open interval whose centre is a certain real number \(a\text{.}\) What does it mean to say that \(f(x)\) has a derivative \(f'(a)\) at \(x=a\text{,}\) and what is the value of \(f'(a)\text{?}\) (Give the definition of \(f^\prime(a)\text{.}\))
Use the definition of \(f^\prime(a)\) you have just given in part (a) to show that if \(\ds f(x)=\frac{1}{2x-1}\) then \(f'(3)=-0.08\text{.}\)
Find \(\ds \lim _{h\to 0}\frac{\sin ^7\left( \frac{\pi }{6}+\frac{h}{2}\right) - \left( \frac{1}{2}\right) ^7}{h}\text{.}\)
\(\displaystyle f^\prime(a)=\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}=\lim_{x\to a}\frac{f(x)-f(a)}{x-a} \text{.}\)
- True.
\(frac{7\sqrt{3}}{256}\text{.}\)
- We state the definition of the derivative:\begin{equation*} \displaystyle f^\prime(a)=\lim _{h\to 0}\frac{f(a+h)-f(a)}{h}=\lim_{x\to a}\frac{f(x)-f(a)}{x-a}.\text{.} \end{equation*}
-
We have:
\begin{equation*} \ds f'(3)=\lim _{h\to 0}\frac{\frac{1}{2(3+h)-1}-\frac{1}{5}}{h}=\lim _{h\to 0}\frac{-2}{5(5+2h)}=-0.08\text{.} \end{equation*} -
We have:
\begin{equation*} \begin{split} \ds \lim _{h\to 0}\frac{\sin ^7\left( \frac{\pi }{6}+\frac{h}{2}\right) - \left( \frac{1}{2}\right) ^7}{h}\amp=\left. \frac{d}{dx}\left(\sin^ 7\frac{x}{2}\right)\right|_{x=\frac{\pi }{3}}\\ \amp=\frac{7}{2}\cdot \sin^ 6\frac{\pi }{6} \cdot \cos \frac{\pi }{6}\\ \amp=\frac{7\sqrt{3}}{256}. \end{split} \end{equation*}
2.
Explain why the function
is continuous but not differentiable on the interval \((-1,1)\text{.}\)
3.
Let \(I\) be a bounded function on \(\mathbb{R}\) and define \(f\) by \(f(x)=x^2I(x)\text{.}\) Show that \(f\) is differentiable at \(x=0\text{.}\)
Let \(|I(x)|\leq M\) for all \(x\in \mathbb{R}\text{.}\) Then for any \(h\not= 0\text{,}\) \(\ds \left| \frac{h^2I(h)}{h}\right| =|hI(h)|\text{.}\) Use the Squeeze Theorem to conclude that \(f\) is differentiable at \(x=0\text{.}\)
4.
Use the definition of the derivative to find \(f^\prime(2)\) for \(f(x)=x+\frac{1}{x}\text{.}\)
5.
Use the definition of the derivative to find \(f^\prime(1)\) for \(f(x)=3x^2-4x+1\text{.}\)
6.
Use the definition of the derivative to find the derivative of \(f(x)=\sqrt{x}\text{.}\) Do not use L'Hopital's rule.
7.
If \(g\) is continuous (but not differentiable) at \(x=0\text{,}\) \(g(0)=8\text{,}\) and \(f(x)=xg(x)\text{,}\) find \(f^\prime(0)\text{.}\)
Since \(g\) is not differentiable we cannot use the product rule. \(\ds f'(0)=\lim _{h\to 0}\frac{hg(h)}{h}=8\text{.}\)
8.
Using the definition of the derivative of \(f(x)\) at \(x=4\text{,}\) find the value of \(f^\prime(4)\) if \(f(x)=\sqrt{5-x}\text{.}\)
9.
Let \(f\) be a function that is continuous everywhere and let
Use the definition of derivatives to evaluate \(F^\prime(0)\text{.}\) Your answer should be in terms of \(f\text{.}\)
10.
The function
is continuous and differentiable at \(x=1\text{.}\) Find the values for the constants \(m\) and \(b\text{.}\)
\(m=e\text{,}\) \(b=0\text{.}\) Solve \(\ds \lim _{x\to 1^-}e^x=\lim _{x\to 1^+}(mx+b)\) and \(\ds \lim _{x\to 1^-}\frac{e^x-e}{x-1}=\lim _{x\to 1^+}\frac{mx+b-(m+b)}{x-1}\) for \(m\) and \(b\text{.}\)
11.
Suppose the functions \(F(x)\) and \(G(x)\) satisfy the following properties:
If \(\ds S(x)=\frac{F(x)}{G(x)}\text{,}\) find \(S^\prime(3)\text{.}\) Simplify your answer.
If \(T(x)=F(G(x))\text{,}\) find \(T^\prime(0)\text{.}\) Simplify your answer.
If \(U(x)=\ln (F(x))\text{,}\) find \(U^\prime(3)\text{.}\) Simplify your answer.
- \(\ds S^\prime(3)=\frac{F'(3)G(3)-F(3)G'(3)}{[G(3)]^2}=-\frac{1}{4}\text{.}\)
- \(\ds T'(0) =F'(G(0))\cdot G'(0)=0\text{.}\)
- \(\ds U'(3)=\frac{F'(3)}{F(3)}=-\frac{1}{2}\text{.}\)
12.
Suppose the functions \(f(x)\) and \(g(x)\) satisfy the following properties:
Find an equation of the tangent line to the graph of the function \(f\) at the point \((2, f(2))\text{.}\)
If \(\ds h(x)=2f(x)-3g(x)\text{,}\) find \(h^\prime(2)\text{.}\)
If \(\ds k(x)=\frac{f(x)}{g(x)}\text{,}\) find \(k^\prime(2)\text{.}\)
If \(p(x)=f(g(x))\text{,}\) find \(p^\prime(0)\text{.}\)
If \(r(x)=f(x)\cdot g(x)\text{,}\) find \(r^\prime(2)\text{.}\)
- \(y=5-x\text{.}\)
- \(-2\text{.}\)
- \(\ds -\frac{1}{4}\text{.}\)
- \(-3\text{.}\)
- \(-4\text{.}\)
13.
Suppose that \(f(x)\) and \(g(x)\) are differentiable functions and that \(h(x)=f(x)g(x)\text{.}\) You are given the following table of values:
Using the table, find \(g^\prime (1)\text{.}\)
From \(h(1)=f(1)g(1)\) and \(h^\prime (1)=f^\prime (1)g(1)+f(1)g^\prime (1)\) it follows that \(g^\prime(1)=9\text{.}\)
14.
Given \(F(x)=f^2(g(x))\text{,}\) \(g(1)=2\text{,}\) \(g'(1)=3\text{,}\) \(f(2)=4\text{,}\) and \(f'(2)=5\text{,}\) find \(F'(1)\text{.}\)
15.
Compute the derivative of \(\ds f(x)=\frac{x}{x-2}\) by
using the limit definition of the derivative;
using the quotient rule.
-
We compute:
\begin{equation*} \begin{split} f^\prime(x)\amp=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ \amp= \lim_{h\to 0} \left[ \frac{\left(\frac{x+h}{x+h-2}\right) - \left(\frac{x}{x-2}\right)}{h}\right] \\ \amp=\lim_{h\to 0} \left[ \frac{(x+h)(x-2) - x(x+h-2)}{(x+h-2)(x-2)} \cdot \frac{1}{h} \right] \\ \amp = \lim_{h\to 0} \left[ \frac{-2h}{(x+h-2)(x-2)} \cdot \frac{1}{h} \right]\\ \amp = \lim_{h\to 0} \left[\frac{-2}{(x+h-2)(x-2)}\right]\\ \amp= \frac{-2}{(x-2)^2}. \end{split} \end{equation*} -
We compute:
\begin{equation*} \begin{split} f^\prime(x)\amp=\frac{\left(\frac{d}{dx} x\right)(x-2) - x \left(\frac{d}{dx} (x-2)\right)}{(x-2)^2} \\ \amp= \frac{(x-2) - x}{(x-2)^2}\\ \amp= \frac{-2}{(x-2)^2}. \end{split} \end{equation*}
16.
Write down the formula for the derivative of \(f(x)=\tan x\text{.}\) State how you could use formulas for derivatives of the sine and cosine functions to derive this formula. (DO NOT do this derivation.)
Use the formula given in part (a) to derive the formula for the derivative of the arctangent function.
Use formulas indicated in parts (a) and (b) to evaluate and simplify the derivative of \(g(x)=\tan (x^2)+\arctan (x^2)\) at \(\ds x=\frac{\sqrt{\pi }}{2}\text{.}\) That is, you want to compute a simplified expression for \(\ds g^\prime\left( \frac{\sqrt{\pi }}{2}\right)\text{.}\)
\(\ds \sec ^2x\text{.}\)
\(\frac{1}{1+x^2}\text{.}\)
\(2\sqrt{\pi }+\frac{16\sqrt{\pi }}{16+\pi ^2}\text{.}\)
\(\ds f^\prime(x)=\sec ^2x\text{.}\) This follows from \(\ds \tan x=\frac{\sin x}{\cos x}\) by using the quotient rule.
From \(g(x)=\arctan x\text{,}\) \(x\in \mathbb{R}\text{,}\) and \(\ds f'(g(x))\cdot g'(x)=1\text{,}\) we conclude that \(\ds g'(x)=\cos ^2 (g(x))\text{.}\) Next, suppose that \(x>0\) and consider the right triangle with the hypotenuse of the length 1 and with one angle measured \(g(x)\) radians. Then \(\ds \tan g(x)=\tan (\arctan x)=x=\frac{\sin g(x)}{\cos g(x)}=\sqrt{\frac{1-g'(x)}{g'(x)}}\) which implies that \(\ds x^2=\frac{1-g'(x)}{g'(x)}\text{.}\) Thus \(\ds g'(x)=\frac{1}{1+x^2}\text{.}\)
From \(\ds g^\prime(x)=2x\sec x^2+\frac{2x}{1+x^4}\) it follows that \(\ds g'\left( \frac{\sqrt{\pi }}{2}\right)=2\sqrt{\pi }+\frac{16\sqrt{\pi }}{16+\pi ^2}\text{.}\)
17.
Show that \(\ds \frac{d}{dx}\ln x=\frac{1}{x}\text{.}\)
18.
Show that \(\ds \frac{d}{dx}\sin^{-1}x=\frac{1}{\sqrt{1-x^2}}\text{.}\)
Recall that if \(f(x)=\sin^{-1} x\) is the inverse function of \(g(x)=\sin x\text{,}\) \(x\in\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\text{.}\)
19.
If \(g(x)=2x^3+\ln x\) is the derivative of \(f(x)\text{,}\) find
20.
Find
21.
Find a function \(f\) and a number \(a\) such that \(\ds \lim_{h\to0}\frac{(2+h)^6-64}{h}=f^\prime(a)\text{.}\)
22.
If \(g(x)\) is differentiable and \(\ds f(x)=(\cos x)e^{g(x)}\text{,}\) what is \(f^\prime(x)\text{?}\)
23.
If \(g(x)\) is differentiable and \(\ds f(x)=(\sin x)\ln {g(x)}\text{,}\) what is \(f^\prime(x)\text{?}\)
24.
Let \(\ds f(x)=x^2\sin \left( \frac{1}{x}\right)\) if \(x\not= 0\text{,}\) and \(f(0)=0\text{.}\) Find \(f^\prime(0)\) (or say why it doesn't exist.)
25.
Let \(f(x)=2x+\cos x\text{.}\) Say why \(f(x)\) is an increasing function for all \(x\text{.}\) If \(g(x)=f^{-1}(x)\text{,}\) calculate \(g^\prime(0)\text{.}\)
\(f'(x)=2-\sin x>0\) for all \(x\in \mathbb{R}\text{.}\) Let \(g(0)=\alpha\text{.}\) Then \(\ds g'(0)=\frac{1}{f'(g(0))}=\frac{1}{2-\sin \alpha }\text{.}\)
26.
Show that \(\ds \frac{d}{dx}(\sin ^{-1}x)=\frac{1}{\sqrt{1-x^2}}\text{.}\)
Let \(f(x)=\sin x\text{,}\) \(\ds x\in \left( -\frac{\pi }{2},\frac{\pi }{2}\right)\) . Then, for \(x\in (-1,1)\text{,}\) \(\ds (f^{-1})'(x)=\frac{1}{\cos (f^{-1}(x))}\text{.}\) Suppose that \(x\in (0,1)\) and let \(\alpha =f^{-1}(x)\text{.}\) Consider the right triangle with the hypothenuse of the length 1 and an angle measured \(\alpha\) radians. The length of the leg opposite to the angle \(\alpha\) equals \(\sin \alpha=x\) which implies \(\ds \frac{d}{dx}(\sin ^{-1}x)=\frac{1}{\sqrt{1-x^2}}\text{.}\)
27.
Suppose that \(f\) is a differentiable function such that \(f(g(x))=x\) and \(f^\prime(x)=1+(f(x))^2\text{.}\) Show that \(\ds g^\prime(x)=\frac{1}{1+x^2}\text{.}\)
Use the chain rule and the given property of \(f'(x)\) to get \((1+(f(g(x)))^2)\cdot g'(x)=1\text{.}\)
28.
If \(\ds y=\frac{\sqrt{x^2+1}-\sqrt{x^2-1}}{\sqrt{x^2+1}+\sqrt{x^2-1}}\text{,}\) show that \(\ds \frac{dy}{dx}=2x- \frac{2x^3}{\sqrt{x^4-1}}\text{.}\)
Write \(\ds y=\frac{1}{2}\cdot (2x^2-2\sqrt{x^4-1})\text{.}\)
29.
Let \(f\) be a function differentiable on \(\mathbb{R}\) and such that for all \(x\not=2\text{,}\) \(\ds f(x)=\frac{x^4-16}{x-2}\text{.}\) Find \(f^{(4)}(2)\text{.}\)
30.
Given \(\ds y=\frac{1}{x}+\cos 2x\text{,}\) find \(\ds \frac{d^5y}{dx^5}\text{.}\) Simplify your answer.
31.
Find the values of \(A\) and \(B\) that make
differentiable at \(x=0\text{.}\)
32.
Find the values of \(A\) and \(B\) that make
differentiable at \(x=0\text{.}\)
33.
If \(f\) and \(g\) are two functions for which \(f^\prime =g\) and \(g^\prime =f\) for all \(x\text{,}\) then prove that \(f^2-g^2\) must be a constant.
34.
Show that if \(f\) and \(g\) are twice differentiable functions (i.e. both have continuous second derivatives) then \((fg)^{\prime\prime}=f^{\prime\prime}g+2f^\prime g^\prime+fg^{\prime\prime}\text{.}\)
35.
Find \(y^\prime\) when \(\ds y=\frac{(x+2)^{3\ln x}}{(x^2+1)^{1/2}}\text{.}\)
36.
Find \(y^\prime\) when \(\ds y=e^{4\cosh \sqrt{x}}\text{.}\)
37.
Find \(f^\prime (0)\) for the function \(f(x)=\sin ^{-1}(x^2+x)+5^x\text{.}\)
38.
Let \(\ds f(x)=\log_a(3x^2-2)\text{.}\) For what value of \(a\) is \(f^\prime(1)=3\text{?}\)
39.
Let \(\ds f(x)=e^{a(x^2-1)}\text{.}\) For what value of \(a\) is \(f^\prime(1)=4\text{?}\)
40.
Let \(\ds f(x)=\ln((x^2+1)^a)\text{.}\) For what value of \(a\) is \(f^\prime(2)=2\text{?}\)
41.
Given
find \(y'\) at \(x=0\text{.}\)
42.
Evaluate \(D_t\cos ^{-1}(\cosh (e^{-3t}))\text{,}\) without simplifying your answer.
43.
Use logarithmic differentiation to find \(y^\prime(u)\) as a function of \(u\) alone, where
without simplifying your answer.
44.
Given \(y=\tan (\cos ^{-1}(e^{4x}))\text{,}\) find \(\ds \frac{dy}{dx}\text{.}\) Do not simplify your answer.
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
50.
\(y=e^{3\ln (2x+1)}\)
51.
\(y=x^{2x}\)
52.
\(\ds y=\frac{e^{2x}}{(x^2+1)^3(1+\sin x)^5}\)
53.
\(x^2+2xy^2=3y+4\)
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
Find the derivatives of the following functions:
71.
\(\ds f(x)=\frac{(x-1)^2}{(x+1)^3}\)
72.
\(f(x)=2^{2x}-(x^2+1)^{2/3}\)
73.
\(f(x)=\tan ^2(x^2)\)
74.
\(f(x)=x^{\arctan x}\)
75.
Compute \(f'''(x)\) where \(f(x)=\sinh (2x)\text{.}\)
Find the derivatives of the following functions:
76.
\(f(x)=5x+x^5+5^x+\sqrt[5]{x}+\ln 5\)
77.
\(y=x^{10}\tanh x\)
78.
\(y=(\ln x)^{\cos x}\)
Find the derivatives of the following functions:
Find the derivatives of the following functions:
83.
\(\ds f(x)=g(x^3)\text{,}\) if \(g(x)=\frac{1}{x^2}\)
84.
\(\ds f(x)=x^2\sin ^2(2x^2)\)
85.
\(\ds f(x)=(x+2)^x\)
Find the derivatives of the following functions:
Find the derivatives of the following functions:
88.
\(\ds y=x^3+3^x+x^{3x}\)
89.
\(\ds y=e^{-5x}\cosh 3x\)
90.
\(\ds y=\arctan\left(\sqrt{x^2-1}\right)\)
91.
\(\ds y= \frac{x^5e^{x^3}\sqrt[3]{x^2+1}}{(x+1)^4}\)
Find the derivatives of the following functions:
92.
\(\ds f(x)=\frac{\ln (x^2-3x+8)}{\sec (x^2+7x)}\)
93.
\(f(x)= \arctan (\cosh (2x-3))\)
94.
\(\ds f(x)=\cos (e^{3x-4})\)
95.
\(\ds f(x)=(\tan x)^{\ln x+x^2}\)
96.
\(\ds f(x)=(\sec ^2x-\tan ^2x)^{45}\)
Find the derivatives of the following functions:
97.
\(\ds h(t)=e^{-\tan \left( \frac{t}{3}\right) }\)
98.
\(2y^{2/3}= 4y^2\ln x\)
99.
\(\ds f(y)=3^{\log _7(\arcsin y)}\)
Find the derivatives of the following functions:
100.
\(\ds f(x)=\sin ^{-1}(x^2+x)+5^x\)
101.
\(g(x)= \cosh \left( \frac{\sqrt{x+1}}{x^2-3}\right)\)
102.
\(\ds f(x)=\frac{3^{\cos x}}{e^{2x}}\)
Find the derivatives of the following functions:
103.
\(\ds f(x)=\frac{\sinh ^{-1}(2^x)}{e^{4x}+a}, \ a\in \mathbb{R}\)
104.
\(\ds g(x)= \frac{(2+\cos (3x^2))e^{\pi x}}{3\sqrt{x}}\)
105.
\(\ds f(x)=\frac{5^{\cos x}}{\sin x}\)
106.
\(\ds y=x^{\arcsin x}\)
Find the derivatives of the following functions:
107.
\(\ds f(x)=\frac{xe^x}{\cos(x^2)}\)
108.
Find \(\ds \frac{d^2y}{dx^2}\) if \(y=\arctan (x^2)\text{.}\)
109.
\(\ds y=x^{\sqrt{x}}\)
Find the derivatives of the following functions:
110.
\(\ds f(x)=\frac{x\ln x}{\sin(2x+3)}\)
111.
\(\ds f(x)=\frac{e^{\cos x}}{x^2+x}\)
112.
\(\ds f(x)=\frac{(x^4+4x+5)^{10}}{\sqrt{x^4-x^2+2}}\cdot \frac{1}{(x^3+x-6)^3}\)
113.
Find \(y^{\prime\prime}\) if \(y=e^{e^x}\text{.}\)
Find the derivatives of the following functions:
114.
\(\ds f(x)=3x^4+\ln x\text{,}\) find \(f^\prime(2)\)
115.
\(f(x)=x^{\sqrt{x}+1}\)
116.
\(g(\theta )=\cos\left(\frac{\theta}{2}\right)\text{,}\) find \(g^{(11)}(\theta)\)
Find the derivatives of the following functions:
117.
\(\ds f(x)=\frac{5^{\log_2(\pi)}e^{\cos(x)}}{\cos(x)}\)
118.
\(\ds y=\cos^x(x)\)
119.
\(g(t)=\sqrt{4t^2+3}\text{,}\) find \(g^{\prime\prime}(t)\)
Find the derivatives of the following functions:
120.
\(\ds f(x)=g\left(x^3\right)\text{,}\) if \(\ds g(x)=\frac{1}{x^2}\)
121.
\(\ds f(x)=x^2\sin^2(2x^2)\)
122.
\(\ds f(x)=(x+2)^x\)
Find the derivatives of the following functions:
123.
\(\ds y=\frac{-4}{x+2}\text{,}\) find \(y^{\prime\prime}\)
124.
\(\ds f(x)=x^6e^x+5e^{2x}\)
125.
\(\ds f(x)=\cos(\sin(x^3))\)
Find the derivatives of the following functions:
126.
\(\ds f(x)=1-3^x+x^2+\frac{x}{\sqrt{1-x}}\)
127.
\(\ds g(z)=\sqrt{\log(|2z+1|)}\)
128.
\(\ds y=\frac{x\sec x}{5\ln (x^2)}\)
129.
\(\ds y=\sinh (7^{2x}-\sqrt{x})\)