Exercises 1.2 Limits
Evaluate the following limits.
1.
limxβ10x2β100xβ10
2.
limxβ10x2β99xβ10
3.
limxβ10x2β100xβ9
4.
limxβ10f(x), where f(x)=x2 for all xβ 10, but f(10)=99.
5.
limxβ10ββx2+20xβ100
Does not exist. Consider the domain of \(g(x) =\sqrt{-x^2+20x-100}=\sqrt{-(x-10)^2}\text{.}\)
Evaluate the following limits.
6.
limxββ4x2β16x+4ln|x|
7.
limxββx2e4xβ1β4x
\(0\text{.}\) Note the exponential function in the denominator.
8.
limxβββ3x6β7x5+x5x6+4x5β3
\(\displaystyle \frac{3}{5}\text{.}\) Divide the numerator and denominator by the highest power.
9.
limxβββ5x7β7x5+12x7+6x6β3
10.
limxβββ2x+3x3x3+2xβ1
11.
limxβββ5x+2x3x3+xβ7
12.
limxββax17+bxcx17βdx3, a,b,c,dβ 0
13.
limxββ3x+|1β3x|1β5x
14.
limxββββx6β3βx6+5
15.
limuββuβu2+1
16.
limxββ1+3xβ2x2+x
17.
limxβββ4x2+3xβ77β3x
18.
limxββββx2β92xβ1
19.
limxβ1+βxβ1x2β1
20.
Let f(x)={x2β1|xβ1|if xβ 1,4if x=1. Find limxβ1βf(x).
21.
Let F(x)=2x2β3x|2xβ3|.
Find limxβ1.5+F(x).
- Find limxβ1.5βF(x).
Does limxβ1.5F(x) exist? Provide a reason.
\(1.5\text{.}\)
\(-1.5\text{.}\)
No. The left-hand limit and the right-hand limit are not equal.
Evaluate the following limits. If any of them fail to exist, say so and say why.
22.
limxββ22β|x|2+x
23.
limxβ2β|x2β4|10β5x
24.
limxβ4β|xβ4|(xβ4)2
25.
limxβ8(xβ8)(x+2)|xβ8|
26.
limxβ2(1x2+5x+6β1xβ2)
27.
limxββ1x2βxβ23x2βxβ1
28.
limxβ16βxβ4xβ16
29.
limxβ83βxβ2xβ8
30.
limxβ42ββx4xβx2
31.
limxβ0β1+2xββ1β4xx
32.
Find constants a and b such that limxβ0βax+bβ2x=1.
Evaluate the following limits. If any of them fail to exist, say so and say why.
33.
limxβ5exβ5βxβ1β2
34.
limxβ7eβx+2β3xβ7
35.
limtβ0βsint+1β1t
36.
limxβ8x1/3β2xβ8
37.
limxββ(βx2+xβx)
38.
limxβββ(βx2+5xββx2+2x)
39.
limxββ(βx2βx+1ββx2+1)
40.
limxββ(βx2+3xβ2βx)
41.
Is there a number b such that limxββ2bx2+15x+15+bx2+xβ2 exists? If so, find the value of b and the value of the limit.
Since the denominator approaches \(0\) as \(x\to -2\text{,}\) the necessary condition for this limit to exist is that the numerator approaches \(0\) as \(x\to -2\text{.}\) Thus we solve \(4b-30+15+b=0\) to obtain \(b=3\text{.}\) \(\ds \lim _{x\to -2}\frac{3x^2+15x+18}{x^2+x-2}=-1\text{.}\)
42.
Determine the value of a so that f(x)=x2+ax+5x+1 has a slant asymptote y=x+3.
43.
Prove that f(x)=lnxx has a horizontal asymptote y=0.
44.
Let I be an open interval such that 4βI and let a function f be defined on a set D=Iβ{4}. Evaluate limxβ4f(x), where x+2β€f(x)β€x2β10 for all xβD.
45.
Evaluate limxβ1f(x), where 2xβ1β€f(x)β€x2 for all x in the interval (0,2).
Use the squeeze theorem to show that
46.
limxβ0x4sin(1x)=0.
Use the fact \(\ds -x^4\leq x^4\sin\left(\frac{1}{x}\right)\leq x^4\text{,}\) \(x\not= 0\text{.}\)
47.
limxβ0+(βxesin(1/x))=0.
From the fact that \(\displaystyle \left| \sin (1/x)\right|\leq 1\) for all \(x\not= 0\) and the fact that the function \(\displaystyle y=e^x\) is increasing conclude that \(\displaystyle e^{-1}\leq e^{\sin (1/x)}\leq e\) for all \(x\not= 0\text{.}\) Thus \(\displaystyle e^{-1} \cdot \sqrt{x} \leq \sqrt{x}e^{\sin (1/x)} \leq e\cdot \sqrt{x}\) for all \(x>0\text{.}\) By the Squeeze Theorem, \(\displaystyle \lim _{x\to 0^+}\left( \sqrt{x}e^{\sin (1/x)}\right) =0\text{.}\)
Evaluate the following limits. If any of them fail to exist, say so and say why.
48.
limxβ0+[(x2+x)1/3sin(1x2)]
49.
limxβ0xsin(ex)
50.
limxβ0xsin(1x2)
51.
limxβ0βx2+xβ sin(Οx)
52.
limxβ0xcos2(1x2)
53.
limxβΟ/2+xcotx
54.
limxβ01βeβx1βx
55.
limxβ0e2xβ1β2xx2
56.
limxβ2exβe2cos(Οx2)+1
57.
limxβ1x2β1e1βx7β1
58.
limxβ0eβx2cos(x2)x2
59.
limxβ1x76β1x45β1
60.
limxβ1xaβ1xbβ1, a,bβ 0
61.
limxβ0(sinx)100x99sin2x
62.
limxβ0x100sin7x(sinx)99
63.
limxβ0x100sin7x(sinx)101
64.
limxβ0arcsin3xarcsin5x
65.
limxβ0sin3xsin5x
66.
limxβ0x3sin(1x2)sinx
67.
limxβ0sinxβxsin4x
68.
limxβ01βcosxxsinx
69.
limΞΈβ3Ο2cosΞΈ+1sinΞΈ
70.
limxβΟ2(xβΟ2)tanx
71.
limxββxtan(1/x)
72.
limxβ0(1sinxβ1x)
73.
limxβ0xβsinxx3
74.
limxβ0(cscxβcotx)
75.
limxβ0+(sinx)(lnsinx)
76.
limxββ(xβ lnxβ1x+1)
77.
limxββex10x3
78.
limxββlnxβx
79.
limxββln3xx2
80.
limxββ(lnx)2x
81.
limxβ1lnxx
82.
limxβ0ln(2+2x)βln2x
83.
limxββln((2x)1/2)ln((3x)1/3)
84.
limxβ0ln(1+3x)2x
85.
limxβ1ln(1+3x)2x
86.
limΞΈβΟ2+ln(sinΞΈ)cosΞΈ
87.
limxβ11βx+lnx1+cos(Οx)
88.
limxβ0(1x2β1tanx)
89.
limxβ0+(1xβ1exβ1)
90.
limxβ0(coshx)1x2
91.
limxβ0+(cosx)1x
92.
limxβ0+(cosx)1x2
93.
limxβ0+xx
94.
limxβ0+xβx
95.
limxβ0+xtanx
96.
limxβ0+(sinx)tanx
97.
limxβ0(1+sinx)1x
98.
limxββ(x+sinx)1x
99.
limxββx1x
100.
limxββ(1+1x)2x
101.
limxββ(1+sin3x)x
102.
\displaystyle \lim _{x\to 0^+}(x+\sin x)^{\frac{1}{x}}
103.
\displaystyle \lim _{x\to 0^+}\left( \frac{x}{x+1}\right) ^{x}
104.
\displaystyle \lim _{x\to e^+}(\ln x)^{\frac{1}{x-e}}
105.
\displaystyle \lim _{x\to e^+}(\ln x)^{\frac{1}{x}}
106.
\displaystyle \lim _{x\to 0}e^{x\sin (1/x)}
107.
\displaystyle \lim _{x\to 0}(1-2x)^{1/x}
108.
\displaystyle \lim _{x\to 0^+}(1+7x)^{1/5x}
109.
\displaystyle \lim _{x\to 0^+}(1+3x)^{1/8x}
110.
\displaystyle \lim _{x\to 0}\left( 1+\frac{x}{2}\right) ^{3/x}
111.
Let x_1=100\text{,} and for n\geq 1\text{,} let \displaystyle x_{n+1}=\frac{1}{2}\left(x_n+\frac{100}{x_n}\right)\text{.} Assume that \displaystyle L=\lim _{n\to \infty }x_n exists. Calculate L\text{.}
115.
\displaystyle \lim _{h\to 0}\frac{\sqrt[4]{16+h}-2}{2h}
116.
\displaystyle \lim _{x\to 1}\frac{\ln x}{\sin (\pi x)}
117.
\displaystyle \lim _{u\to \infty }\frac{u}{\sqrt{u^2+1}}
118.
\displaystyle \lim _{x\to 0 }(1-2x)^{1/x}
119.
\displaystyle \lim _{x\to 0 }\frac{(\sin x)^{100}}{x^{99}\sin (2x)}
120.
\displaystyle \lim _{x\to \infty }\frac{1.01^x}{x^{100}}
121.
\displaystyle \lim _{x\to 0}\frac{(2+x)^{2016}-2^{2016}}{x}
122.
\displaystyle \lim _{x\to \infty }(\sqrt{x^2+x}-x)
123.
\displaystyle \lim _{x\to 0} \cot (3x)\sin (7x)
124.
\displaystyle \lim _{x\to 0^+}x^x
125.
\displaystyle \lim _{x\to \infty} \frac{x^2}{e^x}
126.
\displaystyle \lim _{x\to 3}\frac{\sin x-x}{x^3}
Evaluate the following limits, if they exist.
127.
\displaystyle \lim _{x\to 0}\frac{f(x)}{|x|} given that \displaystyle \lim _{x\to 0}xf(x)=3\text{.}
128.
\displaystyle \lim _{x\to 1} \frac{\sin (x-1)}{x^2+x-2}
129.
\displaystyle \lim _{x\to -\infty }\frac{\sqrt{x^2+4x}}{4x+1}
130.
\displaystyle \lim _{x\to \infty }\frac{\sqrt{x^4+2}}{x^4-4}
131.
\displaystyle \lim _{x\to \infty} (e^x+x)^{1/x}
Evaluate the following limits, if they exist.
Evaluate the following limits. Use β\inftyβ or β-\inftyβ where appropriate.
139.
Use the \varepsilon -- \delta definition of limits to prove that
Let \(\varepsilon >0\) be given. We need to find \(\delta =\delta (\varepsilon )>0\) such that \(|x-0|\lt \delta \Rightarrow |x^3-0|\lt \varepsilon\text{,}\) which is the same as \(|x|\lt \delta \Rightarrow |x^3|\lt \varepsilon\text{.}\) Clearly, we can take \(\delta =\sqrt[3]{\varepsilon }\text{.}\) Indeed, for any \(\varepsilon >0\) we have that \(|x|\lt \sqrt[3]{\varepsilon } \Rightarrow |x|^3=|x^3|\lt \varepsilon\) and, by definition, \(\displaystyle \lim _{x\to 0}x^3=0\text{.}\)
140.
Sketch an approximate graph of f(x)=2x^2 on [0,2]\text{.} Next, draw the points P(1,0) and Q(0,2)\text{.} When using the precise definition of \lim _{x\to 1}f(x)=2\text{,} a number \delta and another number \varepsilon are used. Show points on the graph which these values determine. (Recall that the interval determined by \delta must not be greater than a particular interval determined by \varepsilon\text{.})
Use the graph to find a positive number \delta so that whenever |x-1|\lt \delta it is always true that |2x^2-2|\lt \frac{1}{4}\text{.}
State exactly what has to be proved to establish this limit property of the function f\text{.}
141.
Give an example of a function F=f+g such that the limits of f and g at a do not exist and that the limit of F at a exists.
Take, for example, \(f(x)=\mbox{sign} (x)\text{,}\) \(g(x)=-\mbox{sign} (x)\text{,}\) and \(a=0\text{.}\)
142.
If \ds \lim_{x\to a}[f(x)+g(x)]=2 and \ds \lim_{x\to a}[f(x)-g(x)]=1 find \ds \lim_{x\to a}[f(x)\cdot g(x)]\text{.}
143.
If f' is continuous, use L'Hospital's rule to show that
Explain the meaning of this equation with the aid of a diagram.
\(\displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=\lim _{h\to 0}\frac{f'(x+h)+f'(x-h)}{2}\) and, since \(f'\) is continuous, \(\displaystyle \lim _{h\to 0}f'(x+h)=\lim _{h\to 0}f'(x-h)=f'(x)\text{.}\)