Processing math: 64%
Skip to main content

Exercises 1.2 Limits

Evaluate the following limits. Use limit theorems, not Ξ΅ - Ξ΄ techniques. If any of them fail to exist, say so and say why.

Evaluate the following limits.

1.

limxβ†’10x2βˆ’100xβˆ’10

Answer
\(20\text{.}\)
2.

limxβ†’10x2βˆ’99xβˆ’10

Answer
Does not exist.
3.

limxβ†’10x2βˆ’100xβˆ’9

Answer
\(0\text{.}\)
4.

limx→10f(x), where f(x)=x2 for all x≠10, but f(10)=99.

Answer
\(100\text{.}\)
5.

limxβ†’10βˆšβˆ’x2+20xβˆ’100

Answer

Does not exist. Consider the domain of \(g(x) =\sqrt{-x^2+20x-100}=\sqrt{-(x-10)^2}\text{.}\)

Evaluate the following limits.

6.

limxβ†’βˆ’4x2βˆ’16x+4ln|x|

Answer
\(-8\ln 4\text{.}\)
7.

limxβ†’βˆžx2e4xβˆ’1βˆ’4x

Answer

\(0\text{.}\) Note the exponential function in the denominator.

8.

limxβ†’βˆ’βˆž3x6βˆ’7x5+x5x6+4x5βˆ’3

Answer

\(\displaystyle \frac{3}{5}\text{.}\) Divide the numerator and denominator by the highest power.

9.

limxβ†’βˆ’βˆž5x7βˆ’7x5+12x7+6x6βˆ’3

Answer
\(\displaystyle \frac{5}{2}\text{.}\)
10.

limxβ†’βˆ’βˆž2x+3x3x3+2xβˆ’1

Answer
\(3\text{.}\)
11.

limxβ†’βˆ’βˆž5x+2x3x3+xβˆ’7

Answer
\(2\text{.}\)
12.

limxβ†’βˆžax17+bxcx17βˆ’dx3, a,b,c,dβ‰ 0

Answer
\(\ds \frac{a}{c}\text{.}\)
13.

limxβ†’βˆž3x+|1βˆ’3x|1βˆ’5x

Hint
What is the value of \(3x+|1-3x|\) if \(x\lt \frac{1}{3}\text{?}\)
Answer
\(0\text{.}\)
14.

limxβ†’βˆ’βˆžβˆšx6βˆ’3√x6+5

Answer
\(1\text{.}\)
15.

limuβ†’βˆžu√u2+1

Answer
\(1\text{.}\)
16.

limxβ†’βˆž1+3x√2x2+x

Answer
\(\displaystyle \frac{3}{\sqrt{2}}\text{.}\)
17.

limxβ†’βˆžβˆš4x2+3xβˆ’77βˆ’3x

Answer
\(\displaystyle -\frac{2}{3}\text{.}\)
18.

limxβ†’βˆ’βˆžβˆšx2βˆ’92xβˆ’1

Answer
\(\ds -\frac{1}{2}\text{.}\)
19.

limxβ†’1+√xβˆ’1x2βˆ’1

Hint
Note that \(x^2-1=(x-1)(x+1)\text{.}\)
Answer
\(\infty\text{.}\)
20.

Let f(x)={x2βˆ’1|xβˆ’1|if xβ‰ 1,4if x=1. Find limxβ†’1βˆ’f(x).

Hint

Which statement is true for \(x\lt 1\text{:}\) \(|x-1|=x-1\) or \(|x-1|=1-x\text{?}\)

Answer
\(-2\text{.}\)
21.

Let F(x)=2x2βˆ’3x|2xβˆ’3|.

  1. Find limx→1.5+F(x).

  2. Find limxβ†’1.5βˆ’F(x).
  3. Does limx→1.5F(x) exist? Provide a reason.

Answer
  1. \(1.5\text{.}\)

  2. \(-1.5\text{.}\)

  3. No. The left-hand limit and the right-hand limit are not equal.

Evaluate the following limits. If any of them fail to exist, say so and say why.

22.

limxβ†’βˆ’22βˆ’|x|2+x

Answer
\(1\text{.}\)
23.

limxβ†’2βˆ’|x2βˆ’4|10βˆ’5x

Answer
\(\ds \frac{4}{5}\text{.}\)
24.

limxβ†’4βˆ’|xβˆ’4|(xβˆ’4)2

Answer
\(\infty\text{.}\)
25.

limxβ†’8(xβˆ’8)(x+2)|xβˆ’8|

Answer
Does not exist.
26.

limxβ†’2(1x2+5x+6βˆ’1xβˆ’2)

Answer
Does not exist.
27.

limxβ†’βˆ’1x2βˆ’xβˆ’23x2βˆ’xβˆ’1

Answer
\(0\text{.}\)
28.

limxβ†’16√xβˆ’4xβˆ’16

Hint
Rationalize the numerator.
Answer
\(\displaystyle \frac{1}{8}\text{.}\)
29.

limxβ†’83√xβˆ’2xβˆ’8

Hint
Note that \(x-8=(\sqrt[3]{x}-2)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)\text{.}\)
Answer
\(\displaystyle \frac{1}{12}\text{.}\)
30.

limxβ†’42βˆ’βˆšx4xβˆ’x2

Answer
\(\ds \frac{1}{16}\)
31.

limxβ†’0√1+2xβˆ’βˆš1βˆ’4xx

Answer
\(3\text{.}\)
32.

Find constants a and b such that limxβ†’0√ax+bβˆ’2x=1.

Hint
Rationalize the numerator. Choose the value of \(b\) so that \(x\) becomes a factor in the numerator.
Answer
\(a=b=4\text{.}\)

Evaluate the following limits. If any of them fail to exist, say so and say why.

33.

limxβ†’5exβˆ’5√xβˆ’1βˆ’2

Answer
\(\ds e^4\text{.}\)
34.

limxβ†’7e√x+2βˆ’3xβˆ’7

Answer
\(\ds e^{1/6}\text{.}\)
35.

limtβ†’0√sint+1βˆ’1t

Answer
\(\ds \frac{1}{2}\text{.}\)
36.

limxβ†’8x1/3βˆ’2xβˆ’8

Hint
Note that \(x-8=(\sqrt[3]{x}-2)(\sqrt[3]{x^2}+2\sqrt[3]{x}+4)\text{.}\)
Answer
\(\displaystyle\frac{1}{12}\text{.}\)
37.

limxβ†’βˆž(√x2+xβˆ’x)

Hint
Rationalize the numerator.
Answer
\(\displaystyle \frac{1}{2}\text{.}\)
38.

limxβ†’βˆ’βˆž(√x2+5xβˆ’βˆšx2+2x)

Hint
Rationalize the numerator. Note that \(x\to -\infty\) and use the fact that if \(x\lt 0\) then \(x=-\sqrt{x^2}\text{.}\)
Answer
\(\displaystyle -\frac{3}{2}\text{.}\)
39.

limxβ†’βˆž(√x2βˆ’x+1βˆ’βˆšx2+1)

Answer
\(\displaystyle -\frac{1}{2}\text{.}\)
40.

limxβ†’βˆž(√x2+3xβˆ’2βˆ’x)

Answer
\(\displaystyle \frac{3}{2}\text{.}\)
41.

Is there a number b such that limxβ†’βˆ’2bx2+15x+15+bx2+xβˆ’2 exists? If so, find the value of b and the value of the limit.

Answer
\(b=3\text{.}\)
Solution

Since the denominator approaches \(0\) as \(x\to -2\text{,}\) the necessary condition for this limit to exist is that the numerator approaches \(0\) as \(x\to -2\text{.}\) Thus we solve \(4b-30+15+b=0\) to obtain \(b=3\text{.}\) \(\ds \lim _{x\to -2}\frac{3x^2+15x+18}{x^2+x-2}=-1\text{.}\)

42.

Determine the value of a so that f(x)=x2+ax+5x+1 has a slant asymptote y=x+3.

Hint
Write \(\ds f(x)=x+\frac{(a-1)x+5}{x+1}\text{.}\)
Answer

\(a=4\)

43.

Prove that f(x)=lnxx has a horizontal asymptote y=0.

Answer
\(\displaystyle \lim _{x\to \infty}\frac{\ln x}{x}=0\text{.}\)
44.

Let I be an open interval such that 4∈I and let a function f be defined on a set D=Iβˆ–{4}. Evaluate limxβ†’4f(x), where x+2≀f(x)≀x2βˆ’10 for all x∈D.

Answer
6.
Solution

From \(\displaystyle \lim _{x\to 4}(x+2)=6\) and \(\displaystyle \lim _{x\to 4}(x^2-10)=6\text{,}\) by the Squeeze Theorem, it follows that \(\displaystyle \lim _{x\to 4}f(x)=6\text{.}\)

45.

Evaluate limxβ†’1f(x), where 2xβˆ’1≀f(x)≀x2 for all x in the interval (0,2).

Answer
1.

Use the squeeze theorem to show that

46.

limx→0x4sin(1x)=0.

Solution

Use the fact \(\ds -x^4\leq x^4\sin\left(\frac{1}{x}\right)\leq x^4\text{,}\) \(x\not= 0\text{.}\)

47.

limxβ†’0+(√xesin(1/x))=0.

Solution

From the fact that \(\displaystyle \left| \sin (1/x)\right|\leq 1\) for all \(x\not= 0\) and the fact that the function \(\displaystyle y=e^x\) is increasing conclude that \(\displaystyle e^{-1}\leq e^{\sin (1/x)}\leq e\) for all \(x\not= 0\text{.}\) Thus \(\displaystyle e^{-1} \cdot \sqrt{x} \leq \sqrt{x}e^{\sin (1/x)} \leq e\cdot \sqrt{x}\) for all \(x>0\text{.}\) By the Squeeze Theorem, \(\displaystyle \lim _{x\to 0^+}\left( \sqrt{x}e^{\sin (1/x)}\right) =0\text{.}\)

Evaluate the following limits. If any of them fail to exist, say so and say why.

48.

limx→0+[(x2+x)1/3sin(1x2)]

Hint
Squeeze Theorem.
Answer
\(0\text{.}\)
49.

limx→0xsin(ex)

Hint
Squeeze Theorem.
Answer
\(0\text{.}\)
50.

limx→0xsin(1x2)

Hint
Squeeze Theorem.
Answer
\(0\text{.}\)
51.

limxβ†’0√x2+xβ‹…sin(Ο€x)

Hint
Squeeze Theorem
Answer
\(0\text{.}\)
52.

limx→0xcos2(1x2)

Hint
Squeeze Theorem.
Answer
\(0\text{.}\)
53.

limx→π/2+xcotx

Answer
\(-\infty\text{.}\)
54.

limxβ†’01βˆ’eβˆ’x1βˆ’x

Answer
\(0\text{.}\)
55.

limxβ†’0e2xβˆ’1βˆ’2xx2

Answer
\(2\text{.}\)
56.

limxβ†’2exβˆ’e2cos(Ο€x2)+1

Answer
Does not exist.
57.

limxβ†’1x2βˆ’1e1βˆ’x7βˆ’1

Answer
\(\ds -\frac{2}{7}\text{.}\)
58.

limxβ†’0eβˆ’x2cos(x2)x2

Answer
\(\infty\text{.}\)
59.

limxβ†’1x76βˆ’1x45βˆ’1

Hint

This is the case β€œ\(0/0\)”. Apply L'HΓ΄pital's rule.

Answer
\(\displaystyle \frac{76}{45}\text{.}\)
60.

limxβ†’1xaβˆ’1xbβˆ’1, a,bβ‰ 0

Answer
\(\ds \frac{a}{b}\text{.}\)
61.

limx→0(sinx)100x99sin2x

Hint

Write \(\displaystyle \frac{1}{2}\cdot \left( \frac{\sin x}{x}\right) ^{100}\cdot \frac{2x}{\sin 2x}\text{.}\)

Answer
\(\displaystyle \frac{1}{2}\text{.}\)
62.

limx→0x100sin7x(sinx)99

Hint
Write \(\displaystyle 7\cdot \left( \frac{x}{\sin x}\right) ^{101}\cdot \frac{\sin 7x}{7x}\text{.}\)
Answer
\(7. \)
63.

limx→0x100sin7x(sinx)101

Answer
\(7. \)
64.

limx→0arcsin3xarcsin5x

Hint
This is the case β€œ\(0/0\)”. Apply L'HΓ΄pital's rule.
Answer
\(\displaystyle \frac{3}{5}\text{.}\)
65.

limx→0sin3xsin5x

Answer
\(\displaystyle \frac{3}{5}\text{.}\)
66.

limx→0x3sin(1x2)sinx

Hint
Write \(\displaystyle x^2 \cdot \frac{x}{\sin x}\cdot \sin \left( \frac{1}{x^2}\right)\text{.}\)
Answer
\(0\text{.}\)
67.

limxβ†’0sinx√xsin4x

Hint
\(\displaystyle \frac{\sin x}{2|x|}\cdot \frac{1}{\sqrt{\frac{\sin 4x}{4x}}}\text{.}\)
Answer
Does not exist.
68.

limxβ†’01βˆ’cosxxsinx

Hint
Write \(\displaystyle \frac{1-\cos x}{x^2}\cdot\frac{x}{\sin x}\text{.}\)
Answer
\(\displaystyle \frac{1}{2}\text{.}\)
69.

limΞΈβ†’3Ο€2cosΞΈ+1sinΞΈ

Answer
\(-1\text{.}\)
70.

limxβ†’Ο€2(xβˆ’Ο€2)tanx

Answer
\(-1\text{.}\)
71.

limxβ†’βˆžxtan(1/x)

Hint
Substitute \(\displaystyle t=\frac{1}{x}\text{.}\)
Answer
\(1\text{.}\)
72.

limxβ†’0(1sinxβˆ’1x)

Hint
This is the case \("\infty - \infty"\text{.}\) Write \(\displaystyle \frac{x- \sin x}{x\sin x}\) and apply L'HΓ΄pital's rule.
Answer
\(0\text{.}\)
73.

limxβ†’0xβˆ’sinxx3

Answer
\(\ds \frac{1}{6}.\)
74.

limxβ†’0(cscxβˆ’cotx)

Answer
\(0\text{.}\)
75.

limx→0+(sinx)(lnsinx)

Hint
This is the case \(``0\cdot \infty ''\text{.}\) Write \(\displaystyle \frac{\ln \sin x}{\frac{1}{\sin x}}\) and apply L'HΓ΄pital's rule.
Answer
\(0\text{.}\)
76.

limxβ†’βˆž(xβ‹…lnxβˆ’1x+1)

Answer
\(-2\text{.}\)
77.

limxβ†’βˆžex10x3

Answer
\(\infty\text{.}\)
78.

limxβ†’βˆžlnx√x

Hint
This is the case \(``\infty /\infty ''\text{.}\) Apply L'HΓ΄pital's rule.
Answer
\(0\text{.}\)
79.

limxβ†’βˆžln3xx2

Answer
\(0\text{.}\)
80.

limxβ†’βˆž(lnx)2x

Answer
\(0\text{.}\)
81.

limx→1lnxx

Answer
\(0\text{.}\)
82.

limxβ†’0ln(2+2x)βˆ’ln2x

Hint
This is the case \(``0/0''\text{.}\) Write \(\displaystyle \frac{\ln (1+x)}{x}\) and apply L'HΓ΄pital's rule.
Answer
\(1\text{.}\)
83.

limxβ†’βˆžln((2x)1/2)ln((3x)1/3)

Hint
Use properties of logarithms first.
Answer
\(\displaystyle \frac{3}{2}\text{.}\)
84.

limx→0ln(1+3x)2x

Answer
\(\displaystyle \frac{3}{2}\text{.}\)
85.

limx→1ln(1+3x)2x

Hint
The denominator approaches 2.
Answer
\(\ln 2\text{.}\)
86.

limΞΈβ†’Ο€2+ln(sinΞΈ)cosΞΈ

Hint
This is the case β€œ\(0/0\)”. Apply L'Hospital's rule.
Answer
\(0\text{.}\)
87.

limxβ†’11βˆ’x+lnx1+cos(Ο€x)

Hint
Apply L'Hospital's rule twice.
Answer
\(\displaystyle -\frac{1}{\pi ^2}\text{.}\)
88.

limxβ†’0(1x2βˆ’1tanx)

Hint
This is the case "\(\infty - \infty\)". Write \(\displaystyle \frac{\sin x-x^2\cos x}{x^2\sin x}\) and apply L'Hospital's rule.
Answer
\(\infty\text{.}\)
89.

limxβ†’0+(1xβˆ’1exβˆ’1)

Answer
\(\ds \frac{1}{2}\text{.}\)
90.

limx→0(coshx)1x2

Hint
This is the case "\(\displaystyle 1^\infty\)". Write \(\displaystyle e^{\frac{\ln \cosh x}{x^2}}\text{.}\) Apply L'Hospital's rule and use the fact that the exponential function \(f(x)=e^x\) is continuous.
Answer
\(\displaystyle e^{\frac{1}{2}}\text{.}\)
91.

limx→0+(cosx)1x

Answer
\(1\text{.}\)
92.

limx→0+(cosx)1x2

Answer
\(\ds e^{-1/2}\text{.}\)
93.

limx→0+xx

Hint

This is the case "\(\displaystyle 0^0\)". Write \(\displaystyle x^x=e^{x\ln x}=e^{\frac{\ln x}{x^{-1}}}\text{.}\) Apply L'Hospital's rule and use the fact that the exponential function \(f(x)=e^x\) is continuous.

Answer
\(1\text{.}\)
94.

limxβ†’0+x√x

Answer
\(1\text{.}\)
95.

limx→0+xtanx

Answer
\(1\text{.}\)
96.

limx→0+(sinx)tanx

Answer
\(1\text{.}\)
97.

limx→0(1+sinx)1x

Answer
\(e\text{.}\)
98.

limxβ†’βˆž(x+sinx)1x

Hint
This is the case "\(\infty^0\)".
Answer
\(1\text{.}\)
99.

limxβ†’βˆžx1x

Answer
\(1\text{.}\)
100.

limxβ†’βˆž(1+1x)2x

Answer
\(e^2\text{.}\)
101.

limxβ†’βˆž(1+sin3x)x

Answer
\(\displaystyle e^3\text{.}\)
102.

\displaystyle \lim _{x\to 0^+}(x+\sin x)^{\frac{1}{x}}

Answer
\(\displaystyle 0\text{.}\)
103.

\displaystyle \lim _{x\to 0^+}\left( \frac{x}{x+1}\right) ^{x}

Hint
Write \(\displaystyle e^{x\ln \frac{x}{x+1}}=e^{x\ln x}\cdot e^{-x\ln (x+1)}\) and make your conclusion.
Answer
\(1\text{.}\)
104.

\displaystyle \lim _{x\to e^+}(\ln x)^{\frac{1}{x-e}}

Answer
\(\ds e^{\frac{1}{e}}\text{.}\)
105.

\displaystyle \lim _{x\to e^+}(\ln x)^{\frac{1}{x}}

Answer
\(1\text{.}\)
106.

\displaystyle \lim _{x\to 0}e^{x\sin (1/x)}

Hint
Use the Squeeze Theorem.
Answer
\(1\text{.}\)
107.

\displaystyle \lim _{x\to 0}(1-2x)^{1/x}

Hint
Write \(\displaystyle \left( (1-2x)^{-\frac{1}{2x}}\right) ^{-2}\text{.}\)
Answer
\(\displaystyle e^{-2}\text{.}\)
108.

\displaystyle \lim _{x\to 0^+}(1+7x)^{1/5x}

Hint
Write \(\displaystyle \left( (1+7x)^{\frac{1}{7x}}\right) ^{\frac{7}{5}}\text{.}\)
Answer
\(\displaystyle e^{\frac{7}{5}}\text{.}\)
109.

\displaystyle \lim _{x\to 0^+}(1+3x)^{1/8x}

Hint
Write \(\displaystyle \left( (1+3x)^{\frac{1}{3x}}\right) ^{\frac{3}{8}}\text{.}\)
Answer
\(\displaystyle e^{\frac{3}{8}}\text{.}\)
110.

\displaystyle \lim _{x\to 0}\left( 1+\frac{x}{2}\right) ^{3/x}

Hint
Write \(\displaystyle \left( \left( 1+\frac{x}{2}\right) ^{\frac{2}{x}}\right) ^{\frac{3}{2}}\text{.}\)
Answer
\(\displaystyle e^{\frac{3}{2}}\text{.}\)
111.

Let x_1=100\text{,} and for n\geq 1\text{,} let \displaystyle x_{n+1}=\frac{1}{2}\left(x_n+\frac{100}{x_n}\right)\text{.} Assume that \displaystyle L=\lim _{n\to \infty }x_n exists. Calculate L\text{.}

Hint
Use the fact that \(\displaystyle L=\lim _{n\to \infty }x_n\) to conclude \(L^2=100\text{.}\) Can \(L\) be negative?
Answer
\(10\text{.}\)
Compute the following limits, or show that they do not exist.
112.

\displaystyle \lim _{x \to 0}\frac{1-\cos x}{x^2}

Hint
Write \(\displaystyle \frac{2\sin ^2 \frac{x}{2}}{x^2}\text{,}\) or use L'HΓ΄pital's rule.
Answer
\(\displaystyle \frac{1}{2}\text{.}\)
113.

\displaystyle\lim _{x \to 2\pi }\frac{1-\cos x}{x^2}\text{.}

Answer
\(0\text{.}\)
114.

\displaystyle \lim _{x \to -1}\arcsin x\text{.}

Answer
Does not exist. Note that the domain of \(f(x)=\arcsin x\) is the interval \([-1,1]\text{.}\)
Compute the following limits or state why they do not exist:
115.

\displaystyle \lim _{h\to 0}\frac{\sqrt[4]{16+h}-2}{2h}

Answer
\(\displaystyle \frac{1}{64}\text{.}\)
116.

\displaystyle \lim _{x\to 1}\frac{\ln x}{\sin (\pi x)}

Hint
Use L'HΓ΄pital's rule.
Answer
\(\displaystyle -\frac{1}{\pi }\text{.}\)
117.

\displaystyle \lim _{u\to \infty }\frac{u}{\sqrt{u^2+1}}

Hint
Divide the numerator and denominator by \(u\text{.}\)
Answer
\(1\text{.}\)
118.

\displaystyle \lim _{x\to 0 }(1-2x)^{1/x}

Answer
\(e^{-2}\text{.}\)
119.

\displaystyle \lim _{x\to 0 }\frac{(\sin x)^{100}}{x^{99}\sin (2x)}

Answer
\(\displaystyle \frac{1}{2}\)
120.

\displaystyle \lim _{x\to \infty }\frac{1.01^x}{x^{100}}

Hint
Think, exponential vs. polynomial.
Answer
\(\infty\text{.}\)
Find the following limits. If a limit does not exist, write 'DNE'. No justification necessary.
121.

\displaystyle \lim _{x\to 0}\frac{(2+x)^{2016}-2^{2016}}{x}

Answer
\(2016\cdot 2^{2015}\text{.}\)
122.

\displaystyle \lim _{x\to \infty }(\sqrt{x^2+x}-x)

Answer
\(\displaystyle \frac{1}{2}\text{.}\)
123.

\displaystyle \lim _{x\to 0} \cot (3x)\sin (7x)

Answer
\(\displaystyle \frac{7}{3}\text{.}\)
124.

\displaystyle \lim _{x\to 0^+}x^x

Answer
1.
125.

\displaystyle \lim _{x\to \infty} \frac{x^2}{e^x}

Answer
0.
126.

\displaystyle \lim _{x\to 3}\frac{\sin x-x}{x^3}

Answer
\(\displaystyle \frac{\sin 3 - 3}{27}\text{.}\)

Evaluate the following limits, if they exist.

127.

\displaystyle \lim _{x\to 0}\frac{f(x)}{|x|} given that \displaystyle \lim _{x\to 0}xf(x)=3\text{.}

Hint
Consider \(\displaystyle \lim _{x\to 0}\frac{xf(x)}{x|x|}\text{.}\)
Answer
Does not exist.
128.

\displaystyle \lim _{x\to 1} \frac{\sin (x-1)}{x^2+x-2}

Answer
\(\displaystyle \frac{1}{3}\text{.}\)
129.

\displaystyle \lim _{x\to -\infty }\frac{\sqrt{x^2+4x}}{4x+1}

Hint
Note that \(x\lt 0\text{.}\)
Answer
\(\displaystyle -\frac{1}{4}\text{.}\)
130.

\displaystyle \lim _{x\to \infty }\frac{\sqrt{x^4+2}}{x^4-4}

131.

\displaystyle \lim _{x\to \infty} (e^x+x)^{1/x}

Answer
\(e\text{.}\)

Evaluate the following limits, if they exist.

132.

\displaystyle \lim _{x\to 4}\left[ \frac{1}{\sqrt{x}-2}-\frac{4}{x-4}\right]

Answer
\(\ds \frac{1}{4}\text{.}\)
133.

\displaystyle \lim _{x\to 1} \frac{x^2-1}{e^{1-x^2}-1}

Answer
\(-1\text{.}\)
134.

\displaystyle \lim _{x\to 0}(\sin x)(\ln x)

Answer
\(0\text{.}\)

Evaluate the following limits. Use β€œ\infty” or β€œ-\infty” where appropriate.

135.

\displaystyle \lim _{x\to 1^-}\frac{x+1}{x^2-1}

Answer
\(-\infty\text{.}\)
136.

\displaystyle \lim _{x\to 0} \frac{\sin 6x}{2x}

Answer
\(3\text{.}\)
137.

\displaystyle \lim _{x\to 0}\frac{\sinh 2x}{xe^x}

Answer
\(2\text{.}\)
138.

\displaystyle \lim _{x\to 0^+}(x^{0.01}\ln x)

Answer
\(0\text{.}\)
139.

Use the \varepsilon -- \delta definition of limits to prove that

\begin{equation*} \lim _{x\to 0}x^3=0\text{.} \end{equation*}
Solution

Let \(\varepsilon >0\) be given. We need to find \(\delta =\delta (\varepsilon )>0\) such that \(|x-0|\lt \delta \Rightarrow |x^3-0|\lt \varepsilon\text{,}\) which is the same as \(|x|\lt \delta \Rightarrow |x^3|\lt \varepsilon\text{.}\) Clearly, we can take \(\delta =\sqrt[3]{\varepsilon }\text{.}\) Indeed, for any \(\varepsilon >0\) we have that \(|x|\lt \sqrt[3]{\varepsilon } \Rightarrow |x|^3=|x^3|\lt \varepsilon\) and, by definition, \(\displaystyle \lim _{x\to 0}x^3=0\text{.}\)

140.
  1. Sketch an approximate graph of f(x)=2x^2 on [0,2]\text{.} Next, draw the points P(1,0) and Q(0,2)\text{.} When using the precise definition of \lim _{x\to 1}f(x)=2\text{,} a number \delta and another number \varepsilon are used. Show points on the graph which these values determine. (Recall that the interval determined by \delta must not be greater than a particular interval determined by \varepsilon\text{.})

  2. Use the graph to find a positive number \delta so that whenever |x-1|\lt \delta it is always true that |2x^2-2|\lt \frac{1}{4}\text{.}

  3. State exactly what has to be proved to establish this limit property of the function f\text{.}

Answer
For any \(\varepsilon >0\) there exists \(\delta =\delta (\varepsilon )>0\) such that \(|x-1|\lt \delta \Rightarrow |2x^2-2|\lt \varepsilon\text{.}\)
141.

Give an example of a function F=f+g such that the limits of f and g at a do not exist and that the limit of F at a exists.

Answer

Take, for example, \(f(x)=\mbox{sign} (x)\text{,}\) \(g(x)=-\mbox{sign} (x)\text{,}\) and \(a=0\text{.}\)

142.

If \ds \lim_{x\to a}[f(x)+g(x)]=2 and \ds \lim_{x\to a}[f(x)-g(x)]=1 find \ds \lim_{x\to a}[f(x)\cdot g(x)]\text{.}

Answer
\(\ds \frac{3}{4}\text{.}\)
143.

If f' is continuous, use L'Hospital's rule to show that

\begin{equation*} \displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=f'(x)\text{.} \end{equation*}

Explain the meaning of this equation with the aid of a diagram.

Answer

\(\displaystyle \lim _{h\to 0}\frac{f(x+h)-f(x-h)}{2h}=\lim _{h\to 0}\frac{f'(x+h)+f'(x-h)}{2}\) and, since \(f'\) is continuous, \(\displaystyle \lim _{h\to 0}f'(x+h)=\lim _{h\to 0}f'(x-h)=f'(x)\text{.}\)