next up previous
Postscript version of these notes

STAT 380 Lecture 25

Inverse (Probability Integral) Transform

Fact: F continuous CDF and X,U satisfy

displaymath105

then tex2html_wrap_inline107 Uniform(0,1) if and only if tex2html_wrap_inline109 .

Proof: For simplicity: assume F strictly increasing on inverval (a,b) with F(b)=1 and F(a)=0.

If tex2html_wrap_inline107 Uniform(0,1) then

align26

Conversely: if tex2html_wrap_inline109 and 0 < u < 1 then there is a unique x such that F(x) = u

align28

Application: generate U and solve F(X)=U for X to get tex2html_wrap_inline135 which has cdf F.

Example: For the exponential distribution

displaymath139

Set F(X) = U and solve to get

displaymath143

Observation: tex2html_wrap_inline145 so tex2html_wrap_inline147 also has an Exponential( tex2html_wrap_inline149 ) distribution.

Example: : for F the standard normal cdf solving

displaymath153

requires numerical approximation but such solutions are built in to many languages.

Special purpose transformations:

Example: : If X and Y are iid N(0,1) define tex2html_wrap_inline161 and tex2html_wrap_inline163 by

displaymath165

NOTE: Book says

displaymath167

but this takes values in tex2html_wrap_inline169 ; notation

displaymath171

means angle tex2html_wrap_inline173 in tex2html_wrap_inline175 so that

displaymath177

Then

displaymath179

is part of circle of radius tex2html_wrap_inline181 . (Start at tex2html_wrap_inline183 and go clockwise to angle tex2html_wrap_inline185 .)

Compute joint cdf of tex2html_wrap_inline187 at tex2html_wrap_inline189 .

Define

multline38

Then

align41

Do integral in polar co-ordinates to get

displaymath191

The tex2html_wrap_inline173 integral just gives

displaymath195

The r integral then gives

displaymath199

So

displaymath201

Product of two cdfs so: R and tex2html_wrap_inline205 are independent.

Moreover tex2html_wrap_inline207 has cdf

displaymath209

which is Exponential with rate 1/2.

tex2html_wrap_inline205 is Uniform tex2html_wrap_inline215 .

So: generate tex2html_wrap_inline217 iid Uniform(0,1).

Define

displaymath219

and

displaymath221

Put

displaymath165

You have generated two independent N(0,1) variables.

Acceptance Rejection

If F(X)=U difficult to solve (eg F hard to compute) sometimes use acceptance rejection.

Goal: generate tex2html_wrap_inline109 where tex2html_wrap_inline233 .

Tactic: find density g and constant c such that

displaymath239

and s.t. can generate Y from density g.

Algorithm:

  1. Generate Y which has density g.
  2. Generate tex2html_wrap_inline107 Uniform(0,1) independent of Y.
  3. If tex2html_wrap_inline253 let X=Y.
  4. If not reject Y and go back to step 1; repeat, generating new Y and U (independently) till you accept a Y.

Facts:

Most important fact: tex2html_wrap_inline269 :

Proof: this is like the old craps example:

We compute

displaymath271

(condition on the first iteration where the condition is met).

Condition on Y to get

align68

as desired.


next up previous



Richard Lockhart
Wednesday November 29 13:10:08 PST 2000