next up previous


Postscript version of this file

STAT 380 Lecture 11

Hitting Times

Start irreducible recurrent chain Xn in state i. Let Tj be first n>0 such that Xn=j. Define

\begin{displaymath}m_{ij} = {\rm E}(T_j\vert X_0=i)
\end{displaymath}

First step analysis:
\begin{align*}m_{ij} & = 1\cdot P(X_1=j\vert X_0=i)
\\
& \qquad + \sum_{k\neq j...
...um_{k\neq j} P_{ik} m_{kj}
\\
& = 1 + \sum_{k\neq j} P_{ik} m_{kj}
\end{align*}

Example

\begin{displaymath}{\bf P}=
\left[\begin{array}{cc} \frac{3}{5} & \frac{2}{5}
\\
\\
\frac{1}{5} & \frac{4}{5}
\end{array} \right]
\end{displaymath}

The equations are
\begin{align*}m_{11} & = 1 +\frac{2}{5} m_{21}
\\
m_{12} & = 1 +\frac{3}{5} m_{...
...{21} & = 1 +\frac{4}{5} m_{21}
\\
m_{22} & = 1 +\frac{1}{5} m_{12}
\end{align*}
The second and third equations give immediately
\begin{align*}m_{12} & = \frac{5}{2}
\\
m_{21} & = 5
\end{align*}
Then plug in to the others to get
\begin{align*}m_{11} & = 3
\\
m_{22} & = \frac{3}{2}
\end{align*}

Notice stationary initial distribution is

\begin{displaymath}\left(\frac{1}{m_{11}},\frac{1}{m_{22}}\right)
\end{displaymath}

Consider fraction of time spent in state j:

\begin{displaymath}\frac{1(X_0=j)+\cdots+1(X_n=j)}{n+1}
\end{displaymath}

Imagine chain starts in chain i; take expected value.

\begin{displaymath}\frac{\sum_{r=1}^n {\bf P}^r_{ij} +1(i=j)}{n+1}
\end{displaymath}

If rows of ${\bf P}$ converge to $\pi$ then fraction converges to $\pi_j$; i.e. limiting fraction of time in state j is $\pi_j$.

Heuristic: start chain in i. Expect to return to i every mii time units. So are in state i about once every mii time units; i.e. limiting fraction of time in state iis 1/mii.

Conclusion: for an irreducible recurrent finite state space Markov chain

\begin{displaymath}\pi_i = \frac{1}{m_{ii}} \, .
\end{displaymath}

Infinite State Spaces

Previous conclusion is still right if there is a stationary initial distribution.

Example: $X_n = \text{Heads}-\text{Tails}$ after n tosses of fair coin. Equations are
\begin{align*}m_{0,0} & = 1 + \frac{1}{2}m_{1,0}+\frac{1}{2} m_{-1,0}
\\
m_{1,0} & = 1 + \frac{1}{2} m_{2,0}
\end{align*}
and many more.

Some observations:

You have to go through 1 to get to 0 from 2 so

m2,0=m2,1+m1,0

Symmetry (switching H and T):

m1,0=m-1,0

The transition probabilities are homogeneous:

m2,1=m1,0

Conclusion:


\begin{align*}m_{0,0} & = 1 + m_{1,0}
\\
& = 1+ 1 + \frac{1}{2} m_{2,0}
\\
& = 2 + m_{1,0}
\end{align*}
Notice that there are no finite solutions!

Summary of the situation:

Every state is recurrent.

All the expected hitting times mij are infinite.

All entries ${\bf P}^n_{ij}$ converge to 0.

Jargon: The states in this chain are null recurrent.


next up previous



Richard Lockhart
2000-10-11