Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The TRANSREG Procedure

Main-Effects ANOVA

This example shows how to use the TRANSREG procedure to code and fit a main-effects ANOVA model. The input data set contains the dependent variables Y, factors X1 and X2, and 11 observations. The following statements perform a main-effects ANOVA:

   title 'Introductory Main-Effects ANOVA Example';

   data A;
      input Y X1 $ X2 $;
      datalines;
   8 a a
   7 a a
   4 a b
   3 a b
   5 b a
   4 b a
   2 b b
   1 b b
   8 c a
   7 c a

   5 c b
   2 c b
   ;

   *---Fit a Main-Effects ANOVA model with 1, 0, -1 coding. ---;
   proc transreg ss2;
      model identity(Y) = class(X1 X2 / effects);
      output coefficients replace;
   run;

   *---Print TRANSREG output data set---;
   proc print label;
      format Intercept -- X2a 5.2;
   run;

Introductory Main-Effects ANOVA Example

The TRANSREG Procedure

TRANSREG Univariate Algorithm Iteration History for
Identity(Y)
Iteration
Number
Average
Change
Maximum
Change
R-Square Criterion
Change
Note
1 0.00000 0.00000 0.88144   Converged

Algorithm converged.

The TRANSREG Procedure Hypothesis Tests for Identity(Y)

Univariate ANOVA Table Based on the Usual Degrees of Freedom
Source DF Sum of Squares Mean Square F Value Pr > F
Model 3 57.00000 19.00000 19.83 0.0005
Error 8 7.66667 0.95833    
Corrected Total 11 64.66667      

Root MSE 0.97895 R-Square 0.8814
Dependent Mean 4.66667 Adj R-Sq 0.8370
Coeff Var 20.97739    

Univariate Regression Table Based on the Usual Degrees of Freedom
Variable DF Coefficient Type II
Sum of
Squares
Mean Square F Value Pr > F Label
Intercept 1 4.6666667 261.333 261.333 272.70 <.0001 Intercept
Class.X1a 1 0.8333333 4.167 4.167 4.35 0.0705 X1 a
Class.X1b 1 -1.6666667 16.667 16.667 17.39 0.0031 X1 b
Class.X2a 1 1.8333333 40.333 40.333 42.09 0.0002 X2 a

Figure 65.1: ANOVA Example Output from PROC TRANSREG

The iteration history in Figure 65.1 shows that the final R-Square of 0.88144 is reached on the first iteration.

This is followed by ANOVA, fit statistics, and regression tables. PROC TRANSREG uses an effects (also called deviations from means or 0, 1, -1) coding in this example.

The TRANSREG procedure produces the data set displayed in Figure 65.2.

Introductory Main-Effects ANOVA Example

Obs _TYPE_ _NAME_ Y Intercept X1 a X1 b X2 a X1 X2
1 SCORE ROW1 8 1.00 1.00 0.00 1.00 a a
2 SCORE ROW2 7 1.00 1.00 0.00 1.00 a a
3 SCORE ROW3 4 1.00 1.00 0.00 -1.00 a b
4 SCORE ROW4 3 1.00 1.00 0.00 -1.00 a b
5 SCORE ROW5 5 1.00 0.00 1.00 1.00 b a
6 SCORE ROW6 4 1.00 0.00 1.00 1.00 b a
7 SCORE ROW7 2 1.00 0.00 1.00 -1.00 b b
8 SCORE ROW8 1 1.00 0.00 1.00 -1.00 b b
9 SCORE ROW9 8 1.00 -1.00 -1.00 1.00 c a
10 SCORE ROW10 7 1.00 -1.00 -1.00 1.00 c a
11 SCORE ROW11 5 1.00 -1.00 -1.00 -1.00 c b
12 SCORE ROW12 2 1.00 -1.00 -1.00 -1.00 c b
13 M COEFFI Y . 4.67 0.83 -1.67 1.83    
14 MEAN Y . . 5.50 3.00 6.50    

Figure 65.2: Output Data Set from PROC TRANSREG

The output data set has three kinds of observations, identified by values of _TYPE_.

The observations with _TYPE_='SCORE' form the score partition of the data set, and the observations with _TYPE_='M COEFFI' and _TYPE_='MEAN' form the coefficient partition of the data set.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.