Example 64.4: Large Data Set Application
The following example illustrates how you can use the D= option to
decrease the computation time needed by
the TPSPLINE procedure. Note that,
while the D= option can be helpful in decreasing computation time for
large data sets, it may produce unexpected results when used with
small data sets.
The following statements generate the data set large:
data large;
do x=-5 to 5 by 0.02;
y=5*sin(3*x)+1*rannor(57391);
output;
end;
run;
The data set large
contains 501 observations with one independent variable
x and one dependent variable y.
The following statements invoke PROC TPSPLINE to
produce a thin-plate smoothing spline estimate and the associated 99%
confidence interval. The output statistics
are saved in the data set fit1.
proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) alpha=0.01;
output out=fit1 pred LCLM UCLM;
run;
The results from this MODEL statement are displayed in Output 64.4.1.
Output 64.4.1: Output from PROC TPSPLINE without the D= Option
The TPSPLINE Procedure |
Dependent Variable: y |
Summary of Input Data Set |
Number of Non-Missing Observations |
501 |
Number of Missing Observations |
0 |
Unique Smoothing Design Points |
501 |
Summary of Final Model |
Number of Regression Variables |
0 |
Number of Smoothing Variables |
1 |
Order of Derivative in the Penalty |
2 |
Dimension of Polynomial Space |
2 |
GCV Function |
log10(n*Lambda) |
GCV |
|
-5.000000 |
1.258653 |
|
-4.800000 |
1.228743 |
|
-4.600000 |
1.205835 |
|
-4.400000 |
1.188371 |
|
-4.200000 |
1.174644 |
|
-4.000000 |
1.163102 |
|
-3.800000 |
1.152627 |
|
-3.600000 |
1.142590 |
|
-3.400000 |
1.132700 |
|
-3.200000 |
1.122789 |
|
-3.000000 |
1.112755 |
|
-2.800000 |
1.102642 |
|
-2.600000 |
1.092769 |
|
-2.400000 |
1.083779 |
|
-2.200000 |
1.076636 |
|
-2.000000 |
1.072763 |
* |
-1.800000 |
1.074636 |
|
-1.600000 |
1.087152 |
|
-1.400000 |
1.120339 |
|
-1.200000 |
1.194023 |
|
-1.000000 |
1.344213 |
|
Note: * indicates minimum GCV value. |
|
The TPSPLINE Procedure |
Dependent Variable: y |
Summary Statistics of Final Estimation |
log10(n*Lambda) |
-1.948303 |
Smoothing Penalty |
9953.706749 |
Residual SS |
475.098382 |
Tr(I-A) |
471.086071 |
Model DF |
29.913929 |
Standard Deviation |
1.004250 |
|
The following statements specify an identical model, but with the
additional specification of the D= option. The estimates are obtained by
treating nearby points as replicates.
proc tpspline data=large;
model y =(x) /lambda=(-5 to -1 by 0.2) d=0.05 alpha=0.01;
output out=fit2 pred LCLM UCLM;
run;
The output is displayed in Output 64.4.2.
Output 64.4.2: Output from PROC TPSPLINE with the D= Option
The TPSPLINE Procedure |
Dependent Variable: y |
Summary of Input Data Set |
Number of Non-Missing Observations |
501 |
Number of Missing Observations |
0 |
Unique Smoothing Design Points |
251 |
Summary of Final Model |
Number of Regression Variables |
0 |
Number of Smoothing Variables |
1 |
Order of Derivative in the Penalty |
2 |
Dimension of Polynomial Space |
2 |
GCV Function |
log10(n*Lambda) |
GCV |
|
-5.000000 |
1.306536 |
|
-4.800000 |
1.261692 |
|
-4.600000 |
1.226881 |
|
-4.400000 |
1.200060 |
|
-4.200000 |
1.179284 |
|
-4.000000 |
1.162776 |
|
-3.800000 |
1.149072 |
|
-3.600000 |
1.137120 |
|
-3.400000 |
1.126220 |
|
-3.200000 |
1.115884 |
|
-3.000000 |
1.105766 |
|
-2.800000 |
1.095730 |
|
-2.600000 |
1.085972 |
|
-2.400000 |
1.077066 |
|
-2.200000 |
1.069954 |
|
-2.000000 |
1.066076 |
* |
-1.800000 |
1.067929 |
|
-1.600000 |
1.080419 |
|
-1.400000 |
1.113564 |
|
-1.200000 |
1.187172 |
|
-1.000000 |
1.337252 |
|
Note: * indicates minimum GCV value. |
|
The TPSPLINE Procedure |
Dependent Variable: y |
Summary Statistics of Final Estimation |
log10(n*Lambda) |
-1.947711 |
Smoothing Penalty |
9943.561350 |
Residual SS |
472.142409 |
Tr(I-A) |
471.090128 |
Model DF |
29.909872 |
Standard Deviation |
1.001116 |
|
The difference between the two estimates is minimal.
However, the CPU time for the second MODEL statement is only about
1/8 of the CPU time used in the first model fit.
The following statements produce a plot for comparison of the two
estimates:
data fit2;
set fit2;
P1_y = P_y;
LCLM1_y = LCLM_y;
UCLM1_y = UCLM_y;
drop P_y
LCLM_y
UCLM_y;
proc sort data=fit1;
by x y;
proc sort data=fit2;
by x y;
data comp;
merge fit1 fit2;
by x y;
label p1_y ="Yhat1" p_y="Yhat0"
lclm_y ="Lower CL"
uclm_y ="Upper CL";
symbol1 i=join v=none ;
symbol2 i=join v=none ;
symbol3 i=join v=none color=cyan;
symbol4 i=join v=none color=cyan;
title 'Comparison of Two Estimates';
title2 'with and without the D= Option';
proc gplot data=comp;
plot P_y*x=1
P1_y*x=2
LCLM_y*x=4
UCLM_y*x=4/overlay legend=legend1
vaxis=axis1 haxis=axis2
frame cframe=ligr;
run;
The estimates fit1 and fit2
are displayed in Output 64.4.3 with the 99% confidence interval
from the fit1 output data set.
Output 64.4.3: Comparison of Two Fits with and without the D= Option
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.