Example 54.1: Dosage Levels
In this example, Dose is the variable representing the level
of the stimulus, N represents the number of subjects
tested at each level of the stimulus, and Response is the
number of subjects responding to that level of the stimulus.
Both probit and logit response models are fit to the data.
The LOG10 option in the PROC statement requests that the
log base 10 of Dose is used as the independent variable.
Specifically, for a given level of Dose, the
probability p of a positive response is modeled as
-
p = Pr( Response) = F ( b0 + b1 ×log10( Dose) )
The probabilities are estimated first using the normal distribution
function and then using the logistic distribution function.
Note that, in this model specification,
the natural rate is assumed to be zero.
Lack-of-fit tests and inverse confidence limits are also requested.
In the DATA step that reads the data, a number of observations
are generated that have a missing value for the response.
Although the
PROBIT procedure does not use the observations with the
missing values to fit the model, it does give predicted
values for all nonmissing sets of independent variables.
These data points fill in the plot of fitted
and observed values in the logistic model.
The plot displays the estimated logistic cumulative
distribution function and the observed response rates.
The following statements produce Output 54.1.1:
data a;
infile cards eof=eof;
input Dose N Response;
Observed= Response/N;
output;
return;
eof: do Dose=0.5 to 7.5 by 0.25;
output;
end;
datalines;
1 10 1
2 12 2
3 10 4
4 10 5
5 12 8
6 10 8
7 10 10
;
proc probit log10;
model Response/N=Dose / lackfit inversecl itprint;
model Response/N=Dose / d=logistic inversecl;
output out=B p=Prob std=std xbeta=xbeta;
title 'Output from Probit Procedure';
run;
legend1 label=none frame cframe=ligr cborder=black
position=center value=(justify=center);
axis1 minor=none color=black label=(angle=90 rotate=0) ;
axis2 minor=none color=black;
proc gplot;
plot Observed*Dose Prob*Dose / overlay frame cframe=ligr
vaxis=axis1 haxis=axis2 legend=legend1;
title 'Plot of Observed and Fitted Probabilities';
run;
Output 54.1.1: Dosage Levels: PROC PROBIT
Output from Probit Procedure |
Iteration History for Parameter Estimates |
Iter |
Ridge |
Loglikelihood |
Intercept |
Log10(Dose) |
0 |
0 |
-51.292891 |
0 |
0 |
1 |
0 |
-37.881166 |
-1.355817008 |
2.635206083 |
2 |
0 |
-37.286169 |
-1.764939171 |
3.3408954936 |
3 |
0 |
-37.280389 |
-1.812147863 |
3.4172391614 |
4 |
0 |
-37.280388 |
-1.812704962 |
3.418117919 |
|
Output from Probit Procedure |
Model Information |
Data Set |
WORK.B |
Events Variable |
Response |
Trials Variable |
N |
Number of Observations |
7 |
Number of Events |
38 |
Number of Trials |
74 |
Missing Values |
29 |
Name of Distribution |
NORMAL |
Log Likelihood |
-37.28038802 |
Last Evaluation of the Negative of the Gradient |
Intercept |
Log10(Dose) |
3.4349069E-7 |
-2.09809E-8 |
Last Evaluation of the Negative of the Hessian |
|
Intercept |
Log10(Dose) |
Intercept |
36.005280383 |
20.152675982 |
Log10(Dose) |
20.152675982 |
13.078826305 |
Goodness-of-Fit Tests |
Statistic |
Value |
DF |
Pr > ChiSq |
Pearson Chi-Square |
3.6497 |
5 |
0.6009 |
L.R. Chi-Square |
4.6381 |
5 |
0.4616 |
Response-Covariate Profile |
Response Levels |
2 |
Number of Covariate Values |
7 |
|
The p-values in the Goodness-of-Fit table of 0.6009 for the Pearson
chi-square and 0.4616 for the likelihood ratio chi-square
indicate an adequate fit for the model fit with the
normal distribution.
Output from Probit Procedure |
Analysis of Parameter Estimates |
Variable |
DF |
Estimate |
Standard Error |
Chi-Square |
Pr > ChiSq |
Label |
Intercept |
1 |
-1.81270 |
0.44934 |
16.2743 |
<.0001 |
Intercept |
Log10(Dose) |
1 |
3.41812 |
0.74555 |
21.0196 |
<.0001 |
|
Probit Model in Terms of Tolerance Distribution |
MU |
SIGMA |
0.53032254 |
0.29255866 |
Estimated Covariance Matrix for Tolerance Parameters |
|
MU |
SIGMA |
MU |
0.002418 |
-0.000409 |
SIGMA |
-0.000409 |
0.004072 |
|
Tolerance distribution parameter estimates
for the normal distribution indicate a mean tolerance for the
population of 0.5303.
Output from Probit Procedure |
Probit Analysis on Log10(Dose) |
Probability |
Log10(Dose) |
95% Fiducial Limits |
0.01 |
-0.15027 |
-0.69520 |
0.07710 |
0.02 |
-0.07052 |
-0.55768 |
0.13475 |
0.03 |
-0.01992 |
-0.47066 |
0.17157 |
0.04 |
0.01814 |
-0.40535 |
0.19941 |
0.05 |
0.04911 |
-0.35235 |
0.22218 |
0.06 |
0.07546 |
-0.30733 |
0.24165 |
0.07 |
0.09857 |
-0.26794 |
0.25882 |
0.08 |
0.11926 |
-0.23275 |
0.27426 |
0.09 |
0.13807 |
-0.20081 |
0.28837 |
0.10 |
0.15539 |
-0.17148 |
0.30142 |
0.15 |
0.22710 |
-0.05087 |
0.35631 |
0.20 |
0.28410 |
0.04368 |
0.40124 |
0.25 |
0.33299 |
0.12342 |
0.44116 |
0.30 |
0.37690 |
0.19348 |
0.47857 |
0.35 |
0.41759 |
0.25658 |
0.51505 |
0.40 |
0.45620 |
0.31428 |
0.55183 |
0.45 |
0.49356 |
0.36754 |
0.58999 |
0.50 |
0.53032 |
0.41693 |
0.63057 |
0.55 |
0.56709 |
0.46296 |
0.67451 |
0.60 |
0.60444 |
0.50618 |
0.72271 |
0.65 |
0.64305 |
0.54734 |
0.77603 |
0.70 |
0.68374 |
0.58745 |
0.83551 |
0.75 |
0.72765 |
0.62776 |
0.90265 |
0.80 |
0.77655 |
0.66999 |
0.98009 |
0.85 |
0.83354 |
0.71675 |
1.07280 |
0.90 |
0.90525 |
0.77313 |
1.19192 |
0.91 |
0.92257 |
0.78645 |
1.22098 |
0.92 |
0.94139 |
0.80083 |
1.25266 |
0.93 |
0.96208 |
0.81653 |
1.28760 |
0.94 |
0.98519 |
0.83394 |
1.32673 |
0.95 |
1.01154 |
0.85367 |
1.37150 |
0.96 |
1.04250 |
0.87669 |
1.42425 |
0.97 |
1.08056 |
0.90479 |
1.48930 |
0.98 |
1.13116 |
0.94189 |
1.57603 |
0.99 |
1.21092 |
0.99987 |
1.71322 |
|
The LD50 (ED50 for log dose) is 0.5303, the dose corresponding to a
probability of 0.5. This is the same as the mean tolerance
for the normal distribution.
Output from Probit Procedure |
Probit Analysis on Dose |
Probability |
Dose |
95% Fiducial Limits |
0.01 |
0.70750 |
0.20174 |
1.19428 |
0.02 |
0.85012 |
0.27690 |
1.36381 |
0.03 |
0.95517 |
0.33833 |
1.48445 |
0.04 |
1.04266 |
0.39323 |
1.58275 |
0.05 |
1.11971 |
0.44428 |
1.66794 |
0.06 |
1.18976 |
0.49280 |
1.74444 |
0.07 |
1.25478 |
0.53959 |
1.81474 |
0.08 |
1.31600 |
0.58513 |
1.88043 |
0.09 |
1.37427 |
0.62978 |
1.94253 |
0.10 |
1.43019 |
0.67379 |
2.00182 |
0.15 |
1.68696 |
0.88948 |
2.27148 |
0.20 |
1.92353 |
1.10582 |
2.51907 |
0.25 |
2.15276 |
1.32868 |
2.76162 |
0.30 |
2.38180 |
1.56126 |
3.01001 |
0.35 |
2.61573 |
1.80541 |
3.27375 |
0.40 |
2.85893 |
2.06198 |
3.56308 |
0.45 |
3.11573 |
2.33096 |
3.89040 |
0.50 |
3.39096 |
2.61173 |
4.27141 |
0.55 |
3.69051 |
2.90372 |
4.72622 |
0.60 |
4.02199 |
3.20757 |
5.28094 |
0.65 |
4.39594 |
3.52649 |
5.97082 |
0.70 |
4.82770 |
3.86764 |
6.84712 |
0.75 |
5.34134 |
4.24384 |
7.99198 |
0.80 |
5.97787 |
4.67723 |
9.55182 |
0.85 |
6.81617 |
5.20898 |
11.82500 |
0.90 |
8.03992 |
5.93102 |
15.55685 |
0.91 |
8.36704 |
6.11581 |
16.63355 |
0.92 |
8.73752 |
6.32162 |
17.89203 |
0.93 |
9.16385 |
6.55428 |
19.39079 |
0.94 |
9.66463 |
6.82242 |
21.21933 |
0.95 |
10.26925 |
7.13946 |
23.52336 |
0.96 |
11.02811 |
7.52812 |
26.56140 |
0.97 |
12.03830 |
8.03145 |
30.85292 |
0.98 |
13.52585 |
8.74757 |
37.67327 |
0.99 |
16.25233 |
9.99702 |
51.66816 |
|
The ED50 for dose is 3.39 with a 95% confidence interval of (2.61, 4.27).
Output from Probit Procedure |
Model Information |
Data Set |
WORK.B |
Events Variable |
Response |
Trials Variable |
N |
Number of Observations |
7 |
Number of Events |
38 |
Number of Trials |
74 |
Missing Values |
29 |
Name of Distribution |
LOGISTIC |
Log Likelihood |
-37.11065336 |
|
Output from Probit Procedure |
Analysis of Parameter Estimates |
Variable |
DF |
Estimate |
Standard Error |
Chi-Square |
Pr > ChiSq |
Label |
Intercept |
1 |
-3.22464 |
0.88606 |
13.2447 |
0.0003 |
Intercept |
Log10(Dose) |
1 |
5.97018 |
1.44917 |
16.9721 |
<.0001 |
|
|
The regression parameter estimates for the logistic model of
-3.22 and 5.97 are approximately
times as large as those
for the normal model.
Output from Probit Procedure |
Probit Analysis on Log10(Dose) |
Probability |
Log10(Dose) |
95% Fiducial Limits |
0.01 |
-0.22955 |
-0.97443 |
0.04234 |
0.02 |
-0.11175 |
-0.75160 |
0.12404 |
0.03 |
-0.04212 |
-0.62020 |
0.17266 |
0.04 |
0.00780 |
-0.52620 |
0.20771 |
0.05 |
0.04693 |
-0.45266 |
0.23533 |
0.06 |
0.07925 |
-0.39207 |
0.25827 |
0.07 |
0.10686 |
-0.34039 |
0.27796 |
0.08 |
0.13103 |
-0.29522 |
0.29530 |
0.09 |
0.15259 |
-0.25503 |
0.31085 |
0.10 |
0.17209 |
-0.21876 |
0.32498 |
0.15 |
0.24958 |
-0.07553 |
0.38207 |
0.20 |
0.30792 |
0.03091 |
0.42645 |
0.25 |
0.35611 |
0.11742 |
0.46451 |
0.30 |
0.39820 |
0.19143 |
0.49933 |
0.35 |
0.43644 |
0.25684 |
0.53275 |
0.40 |
0.47221 |
0.31587 |
0.56619 |
0.45 |
0.50651 |
0.36985 |
0.60090 |
0.50 |
0.54013 |
0.41957 |
0.63807 |
0.55 |
0.57374 |
0.46559 |
0.67895 |
0.60 |
0.60804 |
0.50846 |
0.72475 |
0.65 |
0.64381 |
0.54895 |
0.77673 |
0.70 |
0.68205 |
0.58815 |
0.83638 |
0.75 |
0.72414 |
0.62752 |
0.90583 |
0.80 |
0.77233 |
0.66915 |
0.98877 |
0.85 |
0.83067 |
0.71631 |
1.09243 |
0.90 |
0.90816 |
0.77561 |
1.23344 |
0.91 |
0.92766 |
0.79014 |
1.26932 |
0.92 |
0.94922 |
0.80607 |
1.30913 |
0.93 |
0.97339 |
0.82378 |
1.35392 |
0.94 |
1.00100 |
0.84384 |
1.40524 |
0.95 |
1.03332 |
0.86713 |
1.46548 |
0.96 |
1.07245 |
0.89511 |
1.53866 |
0.97 |
1.12237 |
0.93053 |
1.63230 |
0.98 |
1.19200 |
0.97952 |
1.76331 |
0.99 |
1.30980 |
1.06166 |
1.98571 |
|
Output from Probit Procedure |
Probit Analysis on Dose |
Probability |
Dose |
95% Fiducial Limits |
0.01 |
0.58945 |
0.10606 |
1.10241 |
0.02 |
0.77312 |
0.17717 |
1.33059 |
0.03 |
0.90757 |
0.23977 |
1.48818 |
0.04 |
1.01813 |
0.29772 |
1.61328 |
0.05 |
1.11413 |
0.35264 |
1.71923 |
0.06 |
1.20018 |
0.40545 |
1.81245 |
0.07 |
1.27896 |
0.45668 |
1.89655 |
0.08 |
1.35218 |
0.50673 |
1.97380 |
0.09 |
1.42100 |
0.55586 |
2.04573 |
0.10 |
1.48625 |
0.60428 |
2.11340 |
0.15 |
1.77656 |
0.84036 |
2.41031 |
0.20 |
2.03199 |
1.07377 |
2.66962 |
0.25 |
2.27043 |
1.31043 |
2.91417 |
0.30 |
2.50152 |
1.55391 |
3.15737 |
0.35 |
2.73172 |
1.80650 |
3.40997 |
0.40 |
2.96627 |
2.06954 |
3.68293 |
0.45 |
3.21006 |
2.34343 |
3.98929 |
0.50 |
3.46837 |
2.62766 |
4.34580 |
0.55 |
3.74746 |
2.92137 |
4.77469 |
0.60 |
4.05546 |
3.22449 |
5.30576 |
0.65 |
4.40366 |
3.53960 |
5.98046 |
0.70 |
4.80891 |
3.87389 |
6.86087 |
0.75 |
5.29836 |
4.24153 |
8.05054 |
0.80 |
5.92009 |
4.66819 |
9.74470 |
0.85 |
6.77126 |
5.20363 |
12.37174 |
0.90 |
8.09391 |
5.96506 |
17.11758 |
0.91 |
8.46559 |
6.16797 |
18.59179 |
0.92 |
8.89644 |
6.39834 |
20.37650 |
0.93 |
9.40575 |
6.66466 |
22.59024 |
0.94 |
10.02317 |
6.97974 |
25.42373 |
0.95 |
10.79732 |
7.36425 |
29.20649 |
0.96 |
11.81534 |
7.85434 |
34.56649 |
0.97 |
13.25466 |
8.52168 |
42.88406 |
0.98 |
15.55972 |
9.53935 |
57.98471 |
0.99 |
20.40815 |
11.52540 |
96.76344 |
|
Both the ED50 and the LD50 are similar to those for the normal
model.
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.