Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The MULTTEST Procedure

Example 43.3: Peto Test

This example illustrates the use of the Peto mortality-prevalence test. In the data set, each observation represents an animal, and S1-S3 are three tumor types. A 0 in the data set indicates a nonoccurrence of the tumor, 1 indicates an incidental (nonlethal) occurrence, and 2 indicates a lethal occurrence. The time variable T indicates the time of death of the animal. A strata variable B is constructed from T, and a grouping variable Dose is drug dosage.

   data a;
      input S1-S3 T Dose;
      if T<=90 then B=1; else B=2;
      datalines;
   0  0  0  104   0
   2  0  1   80   0
   0  0  1  104   0
   0  0  0  104   0
   0  2  0  100   0
   1  0  0  104   0
   2  0  0   85   1
   2  1  0   60   1
   0  1  0   89   1
   2  0  1   96   1
   0  0  0   96   1
   2  0  1   99   1
   2  1  1   60   2
   2  0  0   50   2
   2  0  1   80   2
   0  0  2   98   2
   0  0  1   99   2
   2  1  1   50   2
   ;

   proc multtest data=a notables out=p stepsid;
      test peto(S1-S3 / permutation=20 time=T uppertailed);
      class Dose;
      strata B;
      contrast 'mort-prev' 0  1  2;
   run;

   proc print data=p;
   run;

The NOTABLES option in the PROC MULTTEST statement suppresses the display of the summary statistics for each variable. The OUT=P option requests an output SAS data set containing all p-values and intermediate statistics. The STEPSID option is used to adjust the p-values.

The TEST statement specifies an upper-tailed Peto test for S1-S3, and TIME=T indicates the variable with values that are death times. The CLASS statement contains the grouping variable Dose, and the STRATA statement contains the blocking variable B. The CONTRAST statement lists linear trend coefficients. PROC PRINT displays the requested p-value data set.

The results from this analysis are listed in Output 43.3.1.

Output 43.3.1: Peto Test

The Multtest Procedure

Model Information
Test for discrete variables: Peto
Exact permutation distribution used: Everywhere
Tails for discrete tests: Upper-tailed
Strata adjustment? Yes
P-value adjustment: Stepdown Sidak


The preceding information corresponds to the PROC MULTTEST invocation. In this case the totals for all prevalence and fatality strata are less than 20, so exact permutation tests are used everywhere, and the STEPSID adjustments are computed from these permutation distributions.

The Multtest Procedure

Contrast Coefficients
Contrast Dose
0 1 2
mort-prev 0 1 2


The trend coefficients are listed in the preceding table, and they happen to be the same as the levels of the Dose variable.

The Multtest Procedure

p-Values
Variable Contrast Raw Stepdown Sidak
S1 mort-prev 0.0681 0.0814
S2 mort-prev 0.5000 0.5000
S3 mort-prev 0.0363 0.0781


In the preceding "p-Values" table, the p-values for the Peto tests are listed in the Raw column, and the stepdown Sidak adjusted p-values are in the Stepdown Sidak column.

The raw Peto test is significant at the 5% level for S3, but the adjusted S3 test is no longer significant at 5%. The raw and adjusted p-values for S2 are the same because of the stepdown technique. Significant p-values support the claim that higher dosage levels promote higher mortality and prevalence.

Obs _test_ _var_ _contrast_ _strat_ _tstrat_ _value_ _exp_ _se_ raw_p stpsid_p
1 PETO S1 mort-prev 1 0 0 0.00000 0.00000 . .
2 PETO S1 mort-prev 2 0 0 0.62500 0.85696 . .
3 PETO S1 mort-prev 50 1 4 2.00000 1.12022 . .
4 PETO S1 mort-prev 60 1 3 1.75000 1.06654 . .
5 PETO S1 mort-prev 80 1 2 1.57143 1.04978 . .
6 PETO S1 mort-prev 85 1 1 0.75000 0.72169 . .
7 PETO S1 mort-prev 96 1 1 0.70000 0.78102 . .
8 PETO S1 mort-prev 98 1 0 0.00000 0.00000 . .
9 PETO S1 mort-prev 99 1 1 0.42857 0.72843 . .
10 PETO S1 mort-prev 100 1 0 0.00000 0.00000 . .
11 PETO S2 mort-prev 1 0 6 5.50000 1.05221 . .
12 PETO S2 mort-prev 2 0 0 0.00000 0.00000 . .
13 PETO S2 mort-prev 50 1 0 0.00000 0.00000 . .
14 PETO S2 mort-prev 60 1 0 0.00000 0.00000 . .
15 PETO S2 mort-prev 80 1 0 0.00000 0.00000 . .
16 PETO S2 mort-prev 85 1 0 0.00000 0.00000 . .
17 PETO S2 mort-prev 96 1 0 0.00000 0.00000 . .
18 PETO S2 mort-prev 98 1 0 0.00000 0.00000 . .
19 PETO S2 mort-prev 99 1 0 0.00000 0.00000 . .
20 PETO S2 mort-prev 100 1 0 0.00000 0.00000 . .
21 PETO S3 mort-prev 1 0 6 5.50000 1.05221 . .
22 PETO S3 mort-prev 2 0 4 2.22222 1.08298 . .
23 PETO S3 mort-prev 50 1 0 0.00000 0.00000 . .
24 PETO S3 mort-prev 60 1 0 0.00000 0.00000 . .
25 PETO S3 mort-prev 80 1 0 0.00000 0.00000 . .
26 PETO S3 mort-prev 85 1 0 0.00000 0.00000 . .
27 PETO S3 mort-prev 96 1 0 0.00000 0.00000 . .
28 PETO S3 mort-prev 98 1 2 0.62500 0.85696 . .
29 PETO S3 mort-prev 99 1 0 0.00000 0.00000 . .
30 PETO S3 mort-prev 100 1 0 0.00000 0.00000 . .
31 PETO S1 mort-prev . . 12 7.82500 2.42699 0.06808 0.08140
32 PETO S2 mort-prev . . 6 5.50000 1.05221 0.50000 0.50000
33 PETO S3 mort-prev . . 12 8.34722 1.73619 0.03627 0.07811


The preceding table lists the OUT= data set. The first 30 observations correspond to intermediate statistics used to compute the Peto p-values. The _test_ variable lists the name of the test, the _var_ variable lists the name of the TEST variables, and the _contrast_ variable lists the CONTRAST label. The _strat_ variable lists the level of the STRATA variable, and the _tstrat_ variable indicates whether or not the stratum corresponds to values of the TIME= variable. The _value_ variable is the observed contrast for a stratum and the _exp_ variable is its expected value. The variable _se_ contains the square root of the variance terms summed to form the denominator of the Peto statistics.

The final three observations correspond to the three Peto tests, with their p-values listed under the raw_p variable. The stpsid_p variable contains the stepdown Sidak adjusted p-values.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.