Example 43.3: Peto Test
This example illustrates the use of the Peto mortality-prevalence
test. In the data set, each observation represents an animal, and
S1-S3 are three tumor types. A 0 in the data set
indicates a nonoccurrence of the tumor, 1 indicates an incidental
(nonlethal) occurrence, and 2 indicates a lethal occurrence.
The time variable T indicates the time of death of the animal.
A strata variable B is constructed from T, and a
grouping variable Dose is drug dosage.
data a;
input S1-S3 T Dose;
if T<=90 then B=1; else B=2;
datalines;
0 0 0 104 0
2 0 1 80 0
0 0 1 104 0
0 0 0 104 0
0 2 0 100 0
1 0 0 104 0
2 0 0 85 1
2 1 0 60 1
0 1 0 89 1
2 0 1 96 1
0 0 0 96 1
2 0 1 99 1
2 1 1 60 2
2 0 0 50 2
2 0 1 80 2
0 0 2 98 2
0 0 1 99 2
2 1 1 50 2
;
proc multtest data=a notables out=p stepsid;
test peto(S1-S3 / permutation=20 time=T uppertailed);
class Dose;
strata B;
contrast 'mort-prev' 0 1 2;
run;
proc print data=p;
run;
The NOTABLES option in the PROC MULTTEST statement suppresses the
display of the summary statistics for each variable. The OUT=P
option requests an output SAS data set containing all p-values and
intermediate statistics. The STEPSID option is used to adjust the
p-values.
The TEST statement specifies an upper-tailed Peto test for
S1-S3, and TIME=T indicates the variable with values that are
death times. The CLASS statement contains the grouping variable
Dose, and the STRATA statement contains the blocking variable
B. The CONTRAST statement lists linear trend coefficients.
PROC PRINT displays the requested p-value data set.
The results from this analysis are listed in Output 43.3.1.
Output 43.3.1: Peto Test
Model Information |
Test for discrete variables: |
Peto |
Exact permutation distribution used: |
Everywhere |
Tails for discrete tests: |
Upper-tailed |
Strata adjustment? |
Yes |
P-value adjustment: |
Stepdown Sidak |
|
The preceding information corresponds to the PROC MULTTEST
invocation. In this case the totals for all prevalence and fatality
strata are less than 20, so exact permutation tests are used
everywhere, and the STEPSID adjustments are computed from these
permutation distributions.
Contrast Coefficients |
Contrast |
Dose |
0 |
1 |
2 |
mort-prev |
0 |
1 |
2 |
|
The trend coefficients are listed in the preceding table, and they
happen to be the same as the levels of the Dose variable.
p-Values |
Variable |
Contrast |
Raw |
Stepdown Sidak |
S1 |
mort-prev |
0.0681 |
0.0814 |
S2 |
mort-prev |
0.5000 |
0.5000 |
S3 |
mort-prev |
0.0363 |
0.0781 |
|
In the preceding "p-Values" table, the p-values for the
Peto tests are listed in the Raw column, and the stepdown Sidak
adjusted p-values are in the Stepdown Sidak column.
The raw Peto test is significant at the 5% level for S3, but
the adjusted S3 test is no longer significant at 5%. The raw
and adjusted p-values for S2 are the same because of the stepdown
technique. Significant p-values support the claim that higher
dosage levels promote higher mortality and prevalence.
Obs |
_test_ |
_var_ |
_contrast_ |
_strat_ |
_tstrat_ |
_value_ |
_exp_ |
_se_ |
raw_p |
stpsid_p |
1 |
PETO |
S1 |
mort-prev |
1 |
0 |
0 |
0.00000 |
0.00000 |
. |
. |
2 |
PETO |
S1 |
mort-prev |
2 |
0 |
0 |
0.62500 |
0.85696 |
. |
. |
3 |
PETO |
S1 |
mort-prev |
50 |
1 |
4 |
2.00000 |
1.12022 |
. |
. |
4 |
PETO |
S1 |
mort-prev |
60 |
1 |
3 |
1.75000 |
1.06654 |
. |
. |
5 |
PETO |
S1 |
mort-prev |
80 |
1 |
2 |
1.57143 |
1.04978 |
. |
. |
6 |
PETO |
S1 |
mort-prev |
85 |
1 |
1 |
0.75000 |
0.72169 |
. |
. |
7 |
PETO |
S1 |
mort-prev |
96 |
1 |
1 |
0.70000 |
0.78102 |
. |
. |
8 |
PETO |
S1 |
mort-prev |
98 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
9 |
PETO |
S1 |
mort-prev |
99 |
1 |
1 |
0.42857 |
0.72843 |
. |
. |
10 |
PETO |
S1 |
mort-prev |
100 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
11 |
PETO |
S2 |
mort-prev |
1 |
0 |
6 |
5.50000 |
1.05221 |
. |
. |
12 |
PETO |
S2 |
mort-prev |
2 |
0 |
0 |
0.00000 |
0.00000 |
. |
. |
13 |
PETO |
S2 |
mort-prev |
50 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
14 |
PETO |
S2 |
mort-prev |
60 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
15 |
PETO |
S2 |
mort-prev |
80 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
16 |
PETO |
S2 |
mort-prev |
85 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
17 |
PETO |
S2 |
mort-prev |
96 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
18 |
PETO |
S2 |
mort-prev |
98 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
19 |
PETO |
S2 |
mort-prev |
99 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
20 |
PETO |
S2 |
mort-prev |
100 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
21 |
PETO |
S3 |
mort-prev |
1 |
0 |
6 |
5.50000 |
1.05221 |
. |
. |
22 |
PETO |
S3 |
mort-prev |
2 |
0 |
4 |
2.22222 |
1.08298 |
. |
. |
23 |
PETO |
S3 |
mort-prev |
50 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
24 |
PETO |
S3 |
mort-prev |
60 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
25 |
PETO |
S3 |
mort-prev |
80 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
26 |
PETO |
S3 |
mort-prev |
85 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
27 |
PETO |
S3 |
mort-prev |
96 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
28 |
PETO |
S3 |
mort-prev |
98 |
1 |
2 |
0.62500 |
0.85696 |
. |
. |
29 |
PETO |
S3 |
mort-prev |
99 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
30 |
PETO |
S3 |
mort-prev |
100 |
1 |
0 |
0.00000 |
0.00000 |
. |
. |
31 |
PETO |
S1 |
mort-prev |
. |
. |
12 |
7.82500 |
2.42699 |
0.06808 |
0.08140 |
32 |
PETO |
S2 |
mort-prev |
. |
. |
6 |
5.50000 |
1.05221 |
0.50000 |
0.50000 |
33 |
PETO |
S3 |
mort-prev |
. |
. |
12 |
8.34722 |
1.73619 |
0.03627 |
0.07811 |
|
The preceding table lists the OUT= data set. The first 30
observations correspond to intermediate statistics used to compute
the Peto p-values. The _test_ variable lists the name of
the test, the _var_ variable lists the name of the TEST
variables, and the _contrast_ variable lists the CONTRAST
label. The _strat_ variable lists the level of the STRATA
variable, and the _tstrat_ variable indicates whether or not the
stratum corresponds to values of the TIME= variable. The
_value_ variable is the observed contrast for a stratum and the
_exp_ variable is its expected value. The variable
_se_ contains the square root of the variance terms summed to
form the denominator of the Peto statistics.
The final three observations correspond to the three Peto tests,
with their p-values listed under the raw_p variable. The
stpsid_p variable contains the stepdown Sidak adjusted
p-values.
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.