Chapter Contents |
Previous |
Next |
The LOESS Procedure |
The following data set contains measurements in grams per square meter of sulfate (SO4) deposits during 1990 at 179 sites throughout the 48 states.
data SO4; input Latitude Longitude SO4 @@; datalines; 32.45833 87.24222 1.403 34.28778 85.96889 2.103 33.07139 109.86472 0.299 36.07167 112.15500 0.304 31.95056 112.80000 0.263 33.60500 92.09722 1.950 . . more data lines . 42.92889 109.78667 0.182 43.22278 109.99111 0.161 43.87333 104.19222 0.306 44.91722 110.42028 0.210 45.07611 72.67556 2.646 ;
The following statements produce the two scatter plots of the SO4 data shown in Output 38.2.1 and Output 38.2.2:
symbol1 color=black value=dot ; proc gplot data=SO4; plot Latitude*Longitude/hreverse; run; proc g3d data=SO4; format SO4 f4.1; scatter Longitude*Latitude=SO4 / shape='balloon' size=0.35 rotate=80 tilt=60; run;Output 38.2.1: Locations of Sulfate Measurements
The sulfate measurements are irregularly spaced. The following statements create a SAS data set containing a regular grid of points that will be used in the SCORE statement:
data PredPoints; do Latitude = 26 to 46 by 1; do Longitude = 79 to 123 by 1; output; end; end;
The following statements fit loess models for two values of the smoothing parameter and save the results in output data sets:
proc loess data=SO4; ods Output ScoreResults=ScoreOut OutputStatistics=StatOut; model SO4=Latitude Longitude/smooth=0.15 0.4 residual; score data=PredPoints; run;
Notice that even though there are two predictors in the model, the SCALE= option is not appropriate because the predictors (Latitude and Longitude) are identically scaled.
Output 38.2.3 shows scatter plots of the fit residuals versus each of the predictors for the two smoothing parameters specified. A loess fit of the residuals is also shown on these scatter plots and is obtained using PROC LOESS with the StatOut data set generated by the previous PROC LOESS step.
proc loess data=StatOut; by SmoothingParameter; ods output OutputStatistics=ResidLatOut; model residual=Latitude; run; proc loess data=StatOut; by SmoothingParameter; ods output OutputStatistics=ResidLongOut; model residual=Longitude; run; proc sort data=ResidLatOut; by SmoothingParameter Latitude; run; proc sort data=ResidLongOut; by SmoothingParameter Longitude; run; goptions nodisplay; symbol1 color=black value=dot ; symbol2 color=black interpol=join value=none; %let opts = vaxis=axis1 overlay vref=0 lv=2; axis1 label = (angle=90 rotate=0); proc gplot data=ResidLatOut; by smoothingParameter; plot (DepVar Pred) * Latitude / &opts name='lat'; run; proc gplot data=ResidLongOut; by smoothingParameter; plot (DepVar Pred) * Longitude / &opts name='long'; run; goptions display; proc greplay nofs tc=sashelp.templt template=l2r2; igout gseg; treplay 1:long 2:long1 3:lat 4:lat1; run; quit ;Output 38.2.3: Scatter Plots of Loess Fit Residuals
The ScoreOut data set contains the model predictions at the grid defined in the PredPoints data set. The following statements request a fitted surface and a contour plot of this surface with a smoothing parameter of 0.15:
proc g3d data=ScoreOut(where= (smoothingParameter=0.15)); format Latitude f4.0; format Longitude f4.0; format p_SO4 f4.1; plot Longitude*Latitude=p_SO4/tilt=60 rotate=80; run; proc gcontour data=ScoreOut(where= (smoothingParameter=0.15)); format latitude f4.0; format longitude f4.0; format p_SO4 f4.1; plot Latitude*Longitude = p_SO4/hreverse; run;Output 38.2.4: LOESS Fit of SO4 Data
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.