Example 37.1: Product-Limit Estimates and Tests of
Association for the VA Lung Cancer Data
This example uses the data presented in
Appendix I of Kalbfleisch and Prentice (1980).
The response variable, SurvTime, is the survival time in
days of a lung cancer patient.
Negative values of SurvTime are censored values.
The covariates are
Cell (type of cancer cell),
Therapy (type of therapy: standard or test),
Prior (prior therapy: 0=no, 10=yes),
Age (age in years),
DiagTime (time in months from diagnosis to entry
into the trial),
and Kps (performance status).
A censoring indicator
variable Censor is created from the data, with value 1 indicating a
censored time and
value 0 an event time. Since there are only two types of therapy,
an indicator variable, Treatment, is constructed for therapy type,
with value 0 for standard therapy and value 1 for test
therapy.
options ls=120;
data VALung;
drop check m;
retain Therapy Cell;
infile cards column=column;
length Check $ 1;
label SurvTime='failure or censoring time'
Kps='karnofsky index'
DiagTime='months till randomization'
Age='age in years'
Prior='prior treatment?'
Cell='cell type'
Therapy='type of treatment'
Treatment='treatment indicator';
M=Column;
input Check $ @@;
if M>Column then M=1;
if Check='s'|Check='t' then input @M Therapy $ Cell $ ;
else input @M SurvTime Kps DiagTime Age Prior @@;
if SurvTime > .;
censor=(SurvTime<0);
SurvTime=abs(SurvTime);
Treatment=(Therapy='test');
datalines;
standard squamous
72 60 7 69 0 411 70 5 64 10 228 60 3 38 0 126 60 9 63 10
118 70 11 65 10 10 20 5 49 0 82 40 10 69 10 110 80 29 68 0
314 50 18 43 0 -100 70 6 70 0 42 60 4 81 0 8 40 58 63 10
144 30 4 63 0 -25 80 9 52 10 11 70 11 48 10
standard small
30 60 3 61 0 384 60 9 42 0 4 40 2 35 0 54 80 4 63 10
13 60 4 56 0 -123 40 3 55 0 -97 60 5 67 0 153 60 14 63 10
59 30 2 65 0 117 80 3 46 0 16 30 4 53 10 151 50 12 69 0
22 60 4 68 0 56 80 12 43 10 21 40 2 55 10 18 20 15 42 0
139 80 2 64 0 20 30 5 65 0 31 75 3 65 0 52 70 2 55 0
287 60 25 66 10 18 30 4 60 0 51 60 1 67 0 122 80 28 53 0
27 60 8 62 0 54 70 1 67 0 7 50 7 72 0 63 50 11 48 0
392 40 4 68 0 10 40 23 67 10
standard adeno
8 20 19 61 10 92 70 10 60 0 35 40 6 62 0 117 80 2 38 0
132 80 5 50 0 12 50 4 63 10 162 80 5 64 0 3 30 3 43 0
95 80 4 34 0
standard large
177 50 16 66 10 162 80 5 62 0 216 50 15 52 0 553 70 2 47 0
278 60 12 63 0 12 40 12 68 10 260 80 5 45 0 200 80 12 41 10
156 70 2 66 0 -182 90 2 62 0 143 90 8 60 0 105 80 11 66 0
103 80 5 38 0 250 70 8 53 10 100 60 13 37 10
test squamous
999 90 12 54 10 112 80 6 60 0 -87 80 3 48 0 -231 50 8 52 10
242 50 1 70 0 991 70 7 50 10 111 70 3 62 0 1 20 21 65 10
587 60 3 58 0 389 90 2 62 0 33 30 6 64 0 25 20 36 63 0
357 70 13 58 0 467 90 2 64 0 201 80 28 52 10 1 50 7 35 0
30 70 11 63 0 44 60 13 70 10 283 90 2 51 0 15 50 13 40 10
test small
25 30 2 69 0 -103 70 22 36 10 21 20 4 71 0 13 30 2 62 0
87 60 2 60 0 2 40 36 44 10 20 30 9 54 10 7 20 11 66 0
24 60 8 49 0 99 70 3 72 0 8 80 2 68 0 99 85 4 62 0
61 70 2 71 0 25 70 2 70 0 95 70 1 61 0 80 50 17 71 0
51 30 87 59 10 29 40 8 67 0
test adeno
24 40 2 60 0 18 40 5 69 10 -83 99 3 57 0 31 80 3 39 0
51 60 5 62 0 90 60 22 50 10 52 60 3 43 0 73 60 3 70 0
8 50 5 66 0 36 70 8 61 0 48 10 4 81 0 7 40 4 58 0
140 70 3 63 0 186 90 3 60 0 84 80 4 62 10 19 50 10 42 0
45 40 3 69 0 80 40 4 63 0
test large
52 60 4 45 0 164 70 15 68 10 19 30 4 39 10 53 60 12 66 0
15 30 5 63 0 43 60 11 49 10 340 80 10 64 10 133 75 1 65 0
111 60 5 64 0 231 70 18 67 10 378 80 4 65 0 49 30 3 37 0
;
PROC LIFETEST is invoked to compute the product-limit estimate of the
survivor function for each type of
cancer cell and to analyze the effects of the variables Age,
Prior, DiagTime, Kps, and Treatment
on the survival of the patients. These
prognostic factors are specified in the TEST statement, and the variable
Cell
is specified in the STRATA statement.
Graphs of the product-limit estimates,
the log estimates, and the
negative log-log estimates are requested through the PLOTS= option
in the PROC LIFETEST statement.
Because of a few large survival times, a MAXTIME
of 600 is used to set the scale of the time axis; that is, the time scale
extends from 0 to a maximum of 600 days in the plots.
The variable Therapy
is specified in
the ID statement to identify the type of therapy for each observation in
the product-limit estimates.
The OUTTEST option specifies the creation of an output data set
named Test to contain
the rank test matrices for the covariates.
title 'VA Lung Cancer Data';
symbol1 c=blue ; symbol2 c=orange; symbol3 c=green;
symbol4 c=red; symbol5 c=cyan; symbol6 c=black;
proc lifetest plots=(s,ls,lls) outtest=Test maxtime=600;
time SurvTime*Censor(1);
id Therapy;
strata Cell;
test Age Prior DiagTime Kps Treatment;
run;
Output 37.1.1 through Output 37.1.5 display the product-limit estimates
of the survivor functions for the four cell types. Summary statistics
of the survival times are also shown. The median survival times
are 51 days, 156 days, 51 days, and 118 days for patients with
adeno cells, large cells, small cells, and squamous cells, respectively.
Output 37.1.1: Product-Limit Survival Estimate for Cell=adeno
Stratum 1: Cell = adeno |
Product-Limit Survival Estimates |
SurvTime |
|
Survival |
Failure |
Survival Standard Error |
Number Failed |
Number Left |
Therapy |
0.000 |
|
1.0000 |
0 |
0 |
0 |
27 |
|
3.000 |
|
0.9630 |
0.0370 |
0.0363 |
1 |
26 |
standard |
7.000 |
|
0.9259 |
0.0741 |
0.0504 |
2 |
25 |
test |
8.000 |
|
. |
. |
. |
3 |
24 |
standard |
8.000 |
|
0.8519 |
0.1481 |
0.0684 |
4 |
23 |
test |
12.000 |
|
0.8148 |
0.1852 |
0.0748 |
5 |
22 |
standard |
18.000 |
|
0.7778 |
0.2222 |
0.0800 |
6 |
21 |
test |
19.000 |
|
0.7407 |
0.2593 |
0.0843 |
7 |
20 |
test |
24.000 |
|
0.7037 |
0.2963 |
0.0879 |
8 |
19 |
test |
31.000 |
|
0.6667 |
0.3333 |
0.0907 |
9 |
18 |
test |
35.000 |
|
0.6296 |
0.3704 |
0.0929 |
10 |
17 |
standard |
36.000 |
|
0.5926 |
0.4074 |
0.0946 |
11 |
16 |
test |
45.000 |
|
0.5556 |
0.4444 |
0.0956 |
12 |
15 |
test |
48.000 |
|
0.5185 |
0.4815 |
0.0962 |
13 |
14 |
test |
51.000 |
|
0.4815 |
0.5185 |
0.0962 |
14 |
13 |
test |
52.000 |
|
0.4444 |
0.5556 |
0.0956 |
15 |
12 |
test |
73.000 |
|
0.4074 |
0.5926 |
0.0946 |
16 |
11 |
test |
80.000 |
|
0.3704 |
0.6296 |
0.0929 |
17 |
10 |
test |
83.000 |
* |
. |
. |
. |
17 |
9 |
test |
84.000 |
|
0.3292 |
0.6708 |
0.0913 |
18 |
8 |
test |
90.000 |
|
0.2881 |
0.7119 |
0.0887 |
19 |
7 |
test |
92.000 |
|
0.2469 |
0.7531 |
0.0850 |
20 |
6 |
standard |
95.000 |
|
0.2058 |
0.7942 |
0.0802 |
21 |
5 |
standard |
117.000 |
|
0.1646 |
0.8354 |
0.0740 |
22 |
4 |
standard |
132.000 |
|
0.1235 |
0.8765 |
0.0659 |
23 |
3 |
standard |
140.000 |
|
0.0823 |
0.9177 |
0.0553 |
24 |
2 |
test |
162.000 |
|
0.0412 |
0.9588 |
0.0401 |
25 |
1 |
standard |
186.000 |
|
0 |
1.0000 |
0 |
26 |
0 |
test |
NOTE: |
The marked survival times are censored observations. |
|
Quartile Estimates |
Percent |
Point Estimate |
95% Confidence Interval |
[Lower |
Upper) |
75 |
92.000 |
73.000 |
140.000 |
50 |
51.000 |
31.000 |
90.000 |
25 |
19.000 |
8.000 |
45.000 |
Mean |
Standard Error |
65.556 |
10.127 |
|
Output 37.1.2: Product-Limit Survival Estimate for Cell=large
Stratum 2: Cell = large |
Product-Limit Survival Estimates |
SurvTime |
|
Survival |
Failure |
Survival Standard Error |
Number Failed |
Number Left |
Therapy |
0.000 |
|
1.0000 |
0 |
0 |
0 |
27 |
|
12.000 |
|
0.9630 |
0.0370 |
0.0363 |
1 |
26 |
standard |
15.000 |
|
0.9259 |
0.0741 |
0.0504 |
2 |
25 |
test |
19.000 |
|
0.8889 |
0.1111 |
0.0605 |
3 |
24 |
test |
43.000 |
|
0.8519 |
0.1481 |
0.0684 |
4 |
23 |
test |
49.000 |
|
0.8148 |
0.1852 |
0.0748 |
5 |
22 |
test |
52.000 |
|
0.7778 |
0.2222 |
0.0800 |
6 |
21 |
test |
53.000 |
|
0.7407 |
0.2593 |
0.0843 |
7 |
20 |
test |
100.000 |
|
0.7037 |
0.2963 |
0.0879 |
8 |
19 |
standard |
103.000 |
|
0.6667 |
0.3333 |
0.0907 |
9 |
18 |
standard |
105.000 |
|
0.6296 |
0.3704 |
0.0929 |
10 |
17 |
standard |
111.000 |
|
0.5926 |
0.4074 |
0.0946 |
11 |
16 |
test |
133.000 |
|
0.5556 |
0.4444 |
0.0956 |
12 |
15 |
test |
143.000 |
|
0.5185 |
0.4815 |
0.0962 |
13 |
14 |
standard |
156.000 |
|
0.4815 |
0.5185 |
0.0962 |
14 |
13 |
standard |
162.000 |
|
0.4444 |
0.5556 |
0.0956 |
15 |
12 |
standard |
164.000 |
|
0.4074 |
0.5926 |
0.0946 |
16 |
11 |
test |
177.000 |
|
0.3704 |
0.6296 |
0.0929 |
17 |
10 |
standard |
182.000 |
* |
. |
. |
. |
17 |
9 |
standard |
200.000 |
|
0.3292 |
0.6708 |
0.0913 |
18 |
8 |
standard |
216.000 |
|
0.2881 |
0.7119 |
0.0887 |
19 |
7 |
standard |
231.000 |
|
0.2469 |
0.7531 |
0.0850 |
20 |
6 |
test |
250.000 |
|
0.2058 |
0.7942 |
0.0802 |
21 |
5 |
standard |
260.000 |
|
0.1646 |
0.8354 |
0.0740 |
22 |
4 |
standard |
278.000 |
|
0.1235 |
0.8765 |
0.0659 |
23 |
3 |
standard |
340.000 |
|
0.0823 |
0.9177 |
0.0553 |
24 |
2 |
test |
378.000 |
|
0.0412 |
0.9588 |
0.0401 |
25 |
1 |
test |
553.000 |
|
0 |
1.0000 |
0 |
26 |
0 |
standard |
NOTE: |
The marked survival times are censored observations. |
|
Quartile Estimates |
Percent |
Point Estimate |
95% Confidence Interval |
[Lower |
Upper) |
75 |
231.000 |
164.000 |
340.000 |
50 |
156.000 |
103.000 |
216.000 |
25 |
53.000 |
43.000 |
133.000 |
Mean |
Standard Error |
170.506 |
25.098 |
|
Output 37.1.3: Product-Limit Survival Estimate for Cell=small
Stratum 3: Cell = small |
Product-Limit Survival Estimates |
SurvTime |
|
Survival |
Failure |
Survival Standard Error |
Number Failed |
Number Left |
Therapy |
0.000 |
|
1.0000 |
0 |
0 |
0 |
48 |
|
2.000 |
|
0.9792 |
0.0208 |
0.0206 |
1 |
47 |
test |
4.000 |
|
0.9583 |
0.0417 |
0.0288 |
2 |
46 |
standard |
7.000 |
|
. |
. |
. |
3 |
45 |
standard |
7.000 |
|
0.9167 |
0.0833 |
0.0399 |
4 |
44 |
test |
8.000 |
|
0.8958 |
0.1042 |
0.0441 |
5 |
43 |
test |
10.000 |
|
0.8750 |
0.1250 |
0.0477 |
6 |
42 |
standard |
13.000 |
|
. |
. |
. |
7 |
41 |
standard |
13.000 |
|
0.8333 |
0.1667 |
0.0538 |
8 |
40 |
test |
16.000 |
|
0.8125 |
0.1875 |
0.0563 |
9 |
39 |
standard |
18.000 |
|
. |
. |
. |
10 |
38 |
standard |
18.000 |
|
0.7708 |
0.2292 |
0.0607 |
11 |
37 |
standard |
20.000 |
|
. |
. |
. |
12 |
36 |
standard |
20.000 |
|
0.7292 |
0.2708 |
0.0641 |
13 |
35 |
test |
21.000 |
|
. |
. |
. |
14 |
34 |
standard |
21.000 |
|
0.6875 |
0.3125 |
0.0669 |
15 |
33 |
test |
22.000 |
|
0.6667 |
0.3333 |
0.0680 |
16 |
32 |
standard |
24.000 |
|
0.6458 |
0.3542 |
0.0690 |
17 |
31 |
test |
25.000 |
|
. |
. |
. |
18 |
30 |
test |
25.000 |
|
0.6042 |
0.3958 |
0.0706 |
19 |
29 |
test |
27.000 |
|
0.5833 |
0.4167 |
0.0712 |
20 |
28 |
standard |
29.000 |
|
0.5625 |
0.4375 |
0.0716 |
21 |
27 |
test |
30.000 |
|
0.5417 |
0.4583 |
0.0719 |
22 |
26 |
standard |
31.000 |
|
0.5208 |
0.4792 |
0.0721 |
23 |
25 |
standard |
51.000 |
|
. |
. |
. |
24 |
24 |
standard |
51.000 |
|
0.4792 |
0.5208 |
0.0721 |
25 |
23 |
test |
52.000 |
|
0.4583 |
0.5417 |
0.0719 |
26 |
22 |
standard |
54.000 |
|
. |
. |
. |
27 |
21 |
standard |
54.000 |
|
0.4167 |
0.5833 |
0.0712 |
28 |
20 |
standard |
56.000 |
|
0.3958 |
0.6042 |
0.0706 |
29 |
19 |
standard |
59.000 |
|
0.3750 |
0.6250 |
0.0699 |
30 |
18 |
standard |
61.000 |
|
0.3542 |
0.6458 |
0.0690 |
31 |
17 |
test |
63.000 |
|
0.3333 |
0.6667 |
0.0680 |
32 |
16 |
standard |
80.000 |
|
0.3125 |
0.6875 |
0.0669 |
33 |
15 |
test |
87.000 |
|
0.2917 |
0.7083 |
0.0656 |
34 |
14 |
test |
95.000 |
|
0.2708 |
0.7292 |
0.0641 |
35 |
13 |
test |
97.000 |
* |
. |
. |
. |
35 |
12 |
standard |
99.000 |
|
. |
. |
. |
36 |
11 |
test |
99.000 |
|
0.2257 |
0.7743 |
0.0609 |
37 |
10 |
test |
103.000 |
* |
. |
. |
. |
37 |
9 |
test |
117.000 |
|
0.2006 |
0.7994 |
0.0591 |
38 |
8 |
standard |
122.000 |
|
0.1755 |
0.8245 |
0.0567 |
39 |
7 |
standard |
123.000 |
* |
. |
. |
. |
39 |
6 |
standard |
139.000 |
|
0.1463 |
0.8537 |
0.0543 |
40 |
5 |
standard |
151.000 |
|
0.1170 |
0.8830 |
0.0507 |
41 |
4 |
standard |
153.000 |
|
0.0878 |
0.9122 |
0.0457 |
42 |
3 |
standard |
287.000 |
|
0.0585 |
0.9415 |
0.0387 |
43 |
2 |
standard |
384.000 |
|
0.0293 |
0.9707 |
0.0283 |
44 |
1 |
standard |
392.000 |
|
0 |
1.0000 |
0 |
45 |
0 |
standard |
NOTE: |
The marked survival times are censored observations. |
|
|
Quartile Estimates |
Percent |
Point Estimate |
95% Confidence Interval |
[Lower |
Upper) |
75 |
99.000 |
59.000 |
151.000 |
50 |
51.000 |
25.000 |
61.000 |
25 |
20.000 |
13.000 |
25.000 |
Mean |
Standard Error |
78.981 |
14.837 |
|
Output 37.1.4: Product-Limit Survival Estimate for Cell=squamous
Stratum 4: Cell = squamous |
Product-Limit Survival Estimates |
SurvTime |
|
Survival |
Failure |
Survival Standard Error |
Number Failed |
Number Left |
Therapy |
0.000 |
|
1.0000 |
0 |
0 |
0 |
35 |
|
1.000 |
|
. |
. |
. |
1 |
34 |
test |
1.000 |
|
0.9429 |
0.0571 |
0.0392 |
2 |
33 |
test |
8.000 |
|
0.9143 |
0.0857 |
0.0473 |
3 |
32 |
standard |
10.000 |
|
0.8857 |
0.1143 |
0.0538 |
4 |
31 |
standard |
11.000 |
|
0.8571 |
0.1429 |
0.0591 |
5 |
30 |
standard |
15.000 |
|
0.8286 |
0.1714 |
0.0637 |
6 |
29 |
test |
25.000 |
|
0.8000 |
0.2000 |
0.0676 |
7 |
28 |
test |
25.000 |
* |
. |
. |
. |
7 |
27 |
standard |
30.000 |
|
0.7704 |
0.2296 |
0.0713 |
8 |
26 |
test |
33.000 |
|
0.7407 |
0.2593 |
0.0745 |
9 |
25 |
test |
42.000 |
|
0.7111 |
0.2889 |
0.0772 |
10 |
24 |
standard |
44.000 |
|
0.6815 |
0.3185 |
0.0794 |
11 |
23 |
test |
72.000 |
|
0.6519 |
0.3481 |
0.0813 |
12 |
22 |
standard |
82.000 |
|
0.6222 |
0.3778 |
0.0828 |
13 |
21 |
standard |
87.000 |
* |
. |
. |
. |
13 |
20 |
test |
100.000 |
* |
. |
. |
. |
13 |
19 |
standard |
110.000 |
|
0.5895 |
0.4105 |
0.0847 |
14 |
18 |
standard |
111.000 |
|
0.5567 |
0.4433 |
0.0861 |
15 |
17 |
test |
112.000 |
|
0.5240 |
0.4760 |
0.0870 |
16 |
16 |
test |
118.000 |
|
0.4912 |
0.5088 |
0.0875 |
17 |
15 |
standard |
126.000 |
|
0.4585 |
0.5415 |
0.0876 |
18 |
14 |
standard |
144.000 |
|
0.4257 |
0.5743 |
0.0873 |
19 |
13 |
standard |
201.000 |
|
0.3930 |
0.6070 |
0.0865 |
20 |
12 |
test |
228.000 |
|
0.3602 |
0.6398 |
0.0852 |
21 |
11 |
standard |
231.000 |
* |
. |
. |
. |
21 |
10 |
test |
242.000 |
|
0.3242 |
0.6758 |
0.0840 |
22 |
9 |
test |
283.000 |
|
0.2882 |
0.7118 |
0.0820 |
23 |
8 |
test |
314.000 |
|
0.2522 |
0.7478 |
0.0793 |
24 |
7 |
standard |
357.000 |
|
0.2161 |
0.7839 |
0.0757 |
25 |
6 |
test |
389.000 |
|
0.1801 |
0.8199 |
0.0711 |
26 |
5 |
test |
411.000 |
|
0.1441 |
0.8559 |
0.0654 |
27 |
4 |
standard |
467.000 |
|
0.1081 |
0.8919 |
0.0581 |
28 |
3 |
test |
587.000 |
|
0.0720 |
0.9280 |
0.0487 |
29 |
2 |
test |
991.000 |
|
0.0360 |
0.9640 |
0.0352 |
30 |
1 |
test |
999.000 |
|
0 |
1.0000 |
0 |
31 |
0 |
test |
NOTE: |
The marked survival times are censored observations. |
|
Quartile Estimates |
Percent |
Point Estimate |
95% Confidence Interval |
[Lower |
Upper) |
75 |
357.000 |
201.000 |
467.000 |
50 |
118.000 |
72.000 |
242.000 |
25 |
33.000 |
11.000 |
111.000 |
Mean |
Standard Error |
230.225 |
48.475 |
|
Output 37.1.5: Summary of Censored and Uncensored Values
Summary of the Number of Censored and Uncensored Values |
Stratum |
Cell |
Total |
Failed |
Censored |
Percent Censored |
1 |
adeno |
27 |
26 |
1 |
3.70 |
2 |
large |
27 |
26 |
1 |
3.70 |
3 |
small |
48 |
45 |
3 |
6.25 |
4 |
squamous |
35 |
31 |
4 |
11.43 |
Total |
|
137 |
128 |
9 |
6.57 |
|
Output 37.1.5 displays a summary of the number of censored and
event observations by cell type.
The graph of the estimated survivor functions is shown
in Output 37.1.6. The adeno cell curve and the small cell
curve are much closer to each other than to the large cell curve
or the squamous cell curve. The survival rates of the adeno cell
patients and the small cell patients decrease rapidly to approximately
29% in 90 days. Shapes of the large cell curve and the squamous cell
curve are quite different, although both decrease less rapidly than
those of the adeno and small cells. The squamous cell curve decreases
more rapidly initially than the large cell curve, but the role is
reversed in the later period.
Output 37.1.6: Graph of the Estimated Survivor Functions
Output 37.1.7 displays the graph of the log of the estimated
survivor functions and Output 37.1.8 displays the log of the
negative log of the estimated survivor functions.
Output 37.1.7: Graph of the Log of the Estimated Survivor Functions
Output 37.1.8: Graph of the Negative Log-Log of the Estimated Survivor Functions
Output 37.1.9: Homogeneity Tests Across Strata
Rank Statistics |
Cell |
Log-Rank |
Wilcoxon |
adeno |
10.306 |
697.0 |
large |
-8.549 |
-1085.0 |
small |
14.898 |
1278.0 |
squamous |
-16.655 |
-890.0 |
Covariance Matrix for the Log-Rank Statistics |
Cell |
adeno |
large |
small |
squamous |
adeno |
12.9662 |
-4.0701 |
-4.4087 |
-4.4873 |
large |
-4.0701 |
24.1990 |
-7.8117 |
-12.3172 |
small |
-4.4087 |
-7.8117 |
21.7543 |
-9.5339 |
squamous |
-4.4873 |
-12.3172 |
-9.5339 |
26.3384 |
Covariance Matrix for the Wilcoxon Statistics |
Cell |
adeno |
large |
small |
squamous |
adeno |
121188 |
-34718 |
-46639 |
-39831 |
large |
-34718 |
151241 |
-59948 |
-56576 |
small |
-46639 |
-59948 |
175590 |
-69002 |
squamous |
-39831 |
-56576 |
-69002 |
165410 |
Test of Equality over Strata |
Test |
Chi-Square |
DF |
Pr > Chi-Square |
Log-Rank |
25.4037 |
3 |
<.0001 |
Wilcoxon |
19.4331 |
3 |
0.0002 |
-2Log(LR) |
33.9343 |
3 |
<.0001 |
|
Results of the homogeneity tests across cell types are given in
Output 37.1.9. The log-rank and
Wilcoxon statistics and their corresponding covariance matrices
are displayed. Also given is
a table that consists
of the approximate chi-square statistics,
degrees of freedom, and p-values for the
log-rank, Wilcoxon, and likelihood ratio tests.
All three tests indicate strong evidence of
a significant difference among the survival
curves for the four types of cancer cells (p < 0.001).
Output 37.1.10: Log-Rank Rank Test of the Prognostic Factors
Univariate Chi-Squares for the Log-Rank Test |
Variable |
Test Statistic |
Standard Deviation |
Chi-Square |
Pr > Chi-Square |
Label |
Age |
-40.7383 |
105.7 |
0.1485 |
0.7000 |
age in years |
Prior |
-19.9435 |
46.9836 |
0.1802 |
0.6712 |
prior treatment? |
DiagTime |
-115.9 |
97.8708 |
1.4013 |
0.2365 |
months till randomization |
Kps |
1123.1 |
170.3 |
43.4747 |
<.0001 |
karnofsky index |
Treatment |
-4.2076 |
5.0407 |
0.6967 |
0.4039 |
treatment indicator |
Covariance Matrix for the Log-Rank Statistics |
Variable |
Age |
Prior |
DiagTime |
Kps |
Treatment |
Age |
11175.4 |
-301.2 |
-892.2 |
-2948.4 |
119.3 |
Prior |
-301.2 |
2207.5 |
2010.9 |
78.6 |
13.9 |
DiagTime |
-892.2 |
2010.9 |
9578.7 |
-2295.3 |
21.9 |
Kps |
-2948.4 |
78.6 |
-2295.3 |
29015.6 |
61.9 |
Treatment |
119.3 |
13.9 |
21.9 |
61.9 |
25.4 |
Forward Stepwise Sequence of Chi-Squares for the Log-Rank Test |
Variable |
DF |
Chi-Square |
Pr > Chi-Square |
Chi-Square Increment |
Pr > Increment |
Label |
Kps |
1 |
43.4747 |
<.0001 |
43.4747 |
<.0001 |
karnofsky index |
Treatment |
2 |
45.2008 |
<.0001 |
1.7261 |
0.1889 |
treatment indicator |
Age |
3 |
46.3012 |
<.0001 |
1.1004 |
0.2942 |
age in years |
Prior |
4 |
46.4134 |
<.0001 |
0.1122 |
0.7377 |
prior treatment? |
DiagTime |
5 |
46.4200 |
<.0001 |
0.00665 |
0.9350 |
months till randomization |
|
Results of the log-rank test of the prognostic variables are shown
in Output 37.1.10. The univariate
test results correspond to testing each prognostic
factor marginally.
The joint covariance matrix of these
univariate test statistics is also displayed.
In computing the overall chi-square statistic,
the partial chi-square statistics following a
forward stepwise entry approach are tabulated.
Consider the log-rank test in Output 37.1.10.
Since the univariate test for Kps has the largest
chi-square (43.4747)
among all the covariates, Kps is entered first.
At this stage, the partial chi-square and the chi-square
increment for Kps are the same as the univariate chi-square.
Among all the covariates not in the model (Age, Prior,
DiagTime, Treatment), Treatment has the
largest approximate
chi-square increment (1.7261) and is entered next.
The approximate chi-square for the model containing Kps and
Treatment is 43.4747+1.7261=45.2008 with 2 degrees of
freedom. The third covariate entered is
Age.
The fourth is Prior, and the fifth is DiagTime .
The overall chi-square statistic on the last line of output
is the partial chi-square for including all the covariates.
It has a value of 46.4200 with 5 degrees of freedom, which is highly
significant (p < 0.0001).
You can establish this forward stepwise entry of prognostic factors
by passing the matrix corresponding to the log-rank test to
the RSQUARE method in the REG procedure. PROC REG finds the sets of
variables that yield the largest chi-square statistics.
data RSq;
set Test;
if _type_='LOG RANK';
_type_='cov';
proc print data=RSq;
proc reg data=RSq(type=cov);
model SurvTime=Age Prior DiagTime Kps Treatment
/ selection=rsquare;
title 'All Possible Subsets of Covariables for the
log-rank Test';
run;
Output 37.1.11 displays the univariate statistics and their covariance
matrix. Results of the best subset regression are shown in Output 37.1.12.
The variable Kps generates the largest univariate
test statistic among all the covariates, the pair Kps and
Age generate the largest
test statistic among any other pairs of covariates, and so on. The
entry order of covariates is identical to that of PROC LIFETEST.
Output 37.1.11: Log-Rank Statistics and Covariance Matrix
Obs |
_TYPE_ |
_NAME_ |
SurvTime |
Age |
Prior |
DiagTime |
Kps |
Treatment |
1 |
cov |
SurvTime |
46.42 |
-40.74 |
-19.94 |
-115.86 |
1123.14 |
-4.208 |
2 |
cov |
Age |
-40.74 |
11175.44 |
-301.23 |
-892.24 |
-2948.45 |
119.297 |
3 |
cov |
Prior |
-19.94 |
-301.23 |
2207.46 |
2010.85 |
78.64 |
13.875 |
4 |
cov |
DiagTime |
-115.86 |
-892.24 |
2010.85 |
9578.69 |
-2295.32 |
21.859 |
5 |
cov |
Kps |
1123.14 |
-2948.45 |
78.64 |
-2295.32 |
29015.62 |
61.945 |
6 |
cov |
Treatment |
-4.21 |
119.30 |
13.87 |
21.86 |
61.95 |
25.409 |
|
Output 37.1.12: Best Subset Regression from the REG Procedure
All Possible Subsets of Covariables for the log-rank Test |
The REG Procedure |
Model: MODEL1 |
Dependent Variable: SurvTime |
R-Square Selection Method |
Number in Model |
R-Square |
Variables in Model |
1 |
0.9366 |
Kps |
1 |
0.0302 |
DiagTime |
1 |
0.0150 |
Treatment |
1 |
0.0039 |
Prior |
1 |
0.0032 |
Age |
2 |
0.9737 |
Kps Treatment |
2 |
0.9472 |
Age Kps |
2 |
0.9417 |
Prior Kps |
2 |
0.9382 |
DiagTime Kps |
2 |
0.0434 |
DiagTime Treatment |
2 |
0.0353 |
Age DiagTime |
2 |
0.0304 |
Prior DiagTime |
2 |
0.0181 |
Prior Treatment |
2 |
0.0159 |
Age Treatment |
2 |
0.0075 |
Age Prior |
3 |
0.9974 |
Age Kps Treatment |
3 |
0.9774 |
Prior Kps Treatment |
3 |
0.9747 |
DiagTime Kps Treatment |
3 |
0.9515 |
Age Prior Kps |
3 |
0.9481 |
Age DiagTime Kps |
3 |
0.9418 |
Prior DiagTime Kps |
3 |
0.0456 |
Age DiagTime Treatment |
3 |
0.0438 |
Prior DiagTime Treatment |
3 |
0.0355 |
Age Prior DiagTime |
3 |
0.0192 |
Age Prior Treatment |
4 |
0.9999 |
Age Prior Kps Treatment |
4 |
0.9976 |
Age DiagTime Kps Treatment |
4 |
0.9774 |
Prior DiagTime Kps Treatment |
4 |
0.9515 |
Age Prior DiagTime Kps |
4 |
0.0459 |
Age Prior DiagTime Treatment |
5 |
1.0000 |
Age Prior DiagTime Kps Treatment |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.