Example 24.2: Multiple Correspondence Analysis of Cars
and Their Owners
In this example, PROC CORRESP creates a Burt table from categorical data
and performs a multiple correspondence analysis. The data are from a
sample of individuals who were asked to provide information about
themselves and their cars. The questions included origin of the car
(American, Japanese, European), size of car (Small, Medium, Large), type
of car (Family, Sporty, Work Vehicle), home ownership (Owns, Rents),
marital/family status (single, married, single and living with children,
and married living with children), and sex (Male, Female).
The data are read and formats assigned in a previous step,
displayed in Example 24.1.
The variables used in this example are Origin,
Size, Type, Income, Home, Marital, and
Sex. MCA specifies multiple correspondence analysis, OBSERVED
displays the Burt table, and the OUTC= option creates an output coordinate
data set. The TABLES statement with only a single variable list and no
comma creates the Burt table. The
%PLOTIT macro is used to plot the results with vertical and horizontal
reference lines.
The data used to produce Output 24.2.1 and
Output 24.2.2 can be found in Example 24.1.
title 'MCA of Car Owners and Car Attributes';
*---Perform Multiple Correspondence Analysis---;
proc corresp mca observed data=Cars outc=Coor;
tables Origin Size Type Income Home Marital Sex;
run;
*---Plot the Multiple Correspondence Analysis Results---;
%plotit(data=Coor, datatype=corresp, HREF=0, vref=0)
Output 24.2.1: Multiple Correspondence Analysis of a Burt Table
MCA of Car Owners and Car Attributes |
Burt Table |
|
American |
European |
Japanese |
Large |
Medium |
Small |
Family |
Sporty |
Work |
1 Income |
2 Incomes |
Own |
Rent |
Married |
Married with Kids |
Single |
Single with Kids |
Female |
Male |
American |
125 |
0 |
0 |
36 |
60 |
29 |
81 |
24 |
20 |
58 |
67 |
93 |
32 |
37 |
50 |
32 |
6 |
58 |
67 |
European |
0 |
44 |
0 |
4 |
20 |
20 |
17 |
23 |
4 |
18 |
26 |
38 |
6 |
13 |
15 |
15 |
1 |
21 |
23 |
Japanese |
0 |
0 |
165 |
2 |
61 |
102 |
76 |
59 |
30 |
74 |
91 |
111 |
54 |
51 |
44 |
62 |
8 |
70 |
95 |
Large |
36 |
4 |
2 |
42 |
0 |
0 |
30 |
1 |
11 |
20 |
22 |
35 |
7 |
9 |
21 |
11 |
1 |
17 |
25 |
Medium |
60 |
20 |
61 |
0 |
141 |
0 |
89 |
39 |
13 |
57 |
84 |
106 |
35 |
42 |
51 |
40 |
8 |
70 |
71 |
Small |
29 |
20 |
102 |
0 |
0 |
151 |
55 |
66 |
30 |
73 |
78 |
101 |
50 |
50 |
37 |
58 |
6 |
62 |
89 |
Family |
81 |
17 |
76 |
30 |
89 |
55 |
174 |
0 |
0 |
69 |
105 |
130 |
44 |
50 |
79 |
35 |
10 |
83 |
91 |
Sporty |
24 |
23 |
59 |
1 |
39 |
66 |
0 |
106 |
0 |
55 |
51 |
71 |
35 |
35 |
12 |
57 |
2 |
44 |
62 |
Work |
20 |
4 |
30 |
11 |
13 |
30 |
0 |
0 |
54 |
26 |
28 |
41 |
13 |
16 |
18 |
17 |
3 |
22 |
32 |
1 Income |
58 |
18 |
74 |
20 |
57 |
73 |
69 |
55 |
26 |
150 |
0 |
80 |
70 |
10 |
27 |
99 |
14 |
47 |
103 |
2 Incomes |
67 |
26 |
91 |
22 |
84 |
78 |
105 |
51 |
28 |
0 |
184 |
162 |
22 |
91 |
82 |
10 |
1 |
102 |
82 |
Own |
93 |
38 |
111 |
35 |
106 |
101 |
130 |
71 |
41 |
80 |
162 |
242 |
0 |
76 |
106 |
52 |
8 |
114 |
128 |
Rent |
32 |
6 |
54 |
7 |
35 |
50 |
44 |
35 |
13 |
70 |
22 |
0 |
92 |
25 |
3 |
57 |
7 |
35 |
57 |
Married |
37 |
13 |
51 |
9 |
42 |
50 |
50 |
35 |
16 |
10 |
91 |
76 |
25 |
101 |
0 |
0 |
0 |
53 |
48 |
Married with Kids |
50 |
15 |
44 |
21 |
51 |
37 |
79 |
12 |
18 |
27 |
82 |
106 |
3 |
0 |
109 |
0 |
0 |
48 |
61 |
Single |
32 |
15 |
62 |
11 |
40 |
58 |
35 |
57 |
17 |
99 |
10 |
52 |
57 |
0 |
0 |
109 |
0 |
35 |
74 |
Single with Kids |
6 |
1 |
8 |
1 |
8 |
6 |
10 |
2 |
3 |
14 |
1 |
8 |
7 |
0 |
0 |
0 |
15 |
13 |
2 |
Female |
58 |
21 |
70 |
17 |
70 |
62 |
83 |
44 |
22 |
47 |
102 |
114 |
35 |
53 |
48 |
35 |
13 |
149 |
0 |
Male |
67 |
23 |
95 |
25 |
71 |
89 |
91 |
62 |
32 |
103 |
82 |
128 |
57 |
48 |
61 |
74 |
2 |
0 |
185 |
|
MCA of Car Owners and Car Attributes |
Inertia and Chi-Square Decomposition |
Singular Value |
Principal Inertia |
Chi- Square |
Percent |
Cumulative Percent |
4 8 12 16 20 ----+----+----+----+----+--- |
0.56934 |
0.32415 |
970.77 |
18.91 |
18.91 |
************************ |
0.48352 |
0.23380 |
700.17 |
13.64 |
32.55 |
***************** |
0.42716 |
0.18247 |
546.45 |
10.64 |
43.19 |
************* |
0.41215 |
0.16987 |
508.73 |
9.91 |
53.10 |
************ |
0.38773 |
0.15033 |
450.22 |
8.77 |
61.87 |
*********** |
0.38520 |
0.14838 |
444.35 |
8.66 |
70.52 |
*********** |
0.34066 |
0.11605 |
347.55 |
6.77 |
77.29 |
******** |
0.32983 |
0.10879 |
325.79 |
6.35 |
83.64 |
******** |
0.31517 |
0.09933 |
297.47 |
5.79 |
89.43 |
******* |
0.28069 |
0.07879 |
235.95 |
4.60 |
94.03 |
****** |
0.26115 |
0.06820 |
204.24 |
3.98 |
98.01 |
***** |
0.18477 |
0.03414 |
102.24 |
1.99 |
100.00 |
** |
Total |
1.71429 |
5133.92 |
100.00 |
|
|
Degrees of Freedom = 324 |
|
MCA of Car Owners and Car Attributes |
Column Coordinates |
|
Dim1 |
Dim2 |
American |
-0.4035 |
0.8129 |
European |
-0.0568 |
-0.5552 |
Japanese |
0.3208 |
-0.4678 |
Large |
-0.6949 |
1.5666 |
Medium |
-0.2562 |
0.0965 |
Small |
0.4326 |
-0.5258 |
Family |
-0.4201 |
0.3602 |
Sporty |
0.6604 |
-0.6696 |
Work |
0.0575 |
0.1539 |
1 Income |
0.8251 |
0.5472 |
2 Incomes |
-0.6727 |
-0.4461 |
Own |
-0.3887 |
-0.0943 |
Rent |
1.0225 |
0.2480 |
Married |
-0.4169 |
-0.7954 |
Married with Kids |
-0.8200 |
0.3237 |
Single |
1.1461 |
0.2930 |
Single with Kids |
0.4373 |
0.8736 |
Female |
-0.3365 |
-0.2057 |
Male |
0.2710 |
0.1656 |
Summary Statistics for the Column Points |
|
Quality |
Mass |
Inertia |
American |
0.4925 |
0.0535 |
0.0521 |
European |
0.0473 |
0.0188 |
0.0724 |
Japanese |
0.3141 |
0.0706 |
0.0422 |
Large |
0.4224 |
0.0180 |
0.0729 |
Medium |
0.0548 |
0.0603 |
0.0482 |
Small |
0.3825 |
0.0646 |
0.0457 |
Family |
0.3330 |
0.0744 |
0.0399 |
Sporty |
0.4112 |
0.0453 |
0.0569 |
Work |
0.0052 |
0.0231 |
0.0699 |
1 Income |
0.7991 |
0.0642 |
0.0459 |
2 Incomes |
0.7991 |
0.0787 |
0.0374 |
Own |
0.4208 |
0.1035 |
0.0230 |
Rent |
0.4208 |
0.0393 |
0.0604 |
Married |
0.3496 |
0.0432 |
0.0581 |
Married with Kids |
0.3765 |
0.0466 |
0.0561 |
Single |
0.6780 |
0.0466 |
0.0561 |
Single with Kids |
0.0449 |
0.0064 |
0.0796 |
Female |
0.1253 |
0.0637 |
0.0462 |
Male |
0.1253 |
0.0791 |
0.0372 |
|
MCA of Car Owners and Car Attributes |
Partial Contributions to Inertia for the Column Points |
|
Dim1 |
Dim2 |
American |
0.0268 |
0.1511 |
European |
0.0002 |
0.0248 |
Japanese |
0.0224 |
0.0660 |
Large |
0.0268 |
0.1886 |
Medium |
0.0122 |
0.0024 |
Small |
0.0373 |
0.0764 |
Family |
0.0405 |
0.0413 |
Sporty |
0.0610 |
0.0870 |
Work |
0.0002 |
0.0023 |
1 Income |
0.1348 |
0.0822 |
2 Incomes |
0.1099 |
0.0670 |
Own |
0.0482 |
0.0039 |
Rent |
0.1269 |
0.0103 |
Married |
0.0232 |
0.1169 |
Married with Kids |
0.0967 |
0.0209 |
Single |
0.1889 |
0.0171 |
Single with Kids |
0.0038 |
0.0209 |
Female |
0.0223 |
0.0115 |
Male |
0.0179 |
0.0093 |
|
MCA of Car Owners and Car Attributes |
Indices of the Coordinates that Contribute Most to Inertia for the Column Points |
|
Dim1 |
Dim2 |
Best |
American |
0 |
2 |
2 |
European |
0 |
0 |
2 |
Japanese |
0 |
2 |
2 |
Large |
0 |
2 |
2 |
Medium |
0 |
0 |
1 |
Small |
0 |
2 |
2 |
Family |
2 |
0 |
2 |
Sporty |
2 |
2 |
2 |
Work |
0 |
0 |
2 |
1 Income |
1 |
1 |
1 |
2 Incomes |
1 |
1 |
1 |
Own |
1 |
0 |
1 |
Rent |
1 |
0 |
1 |
Married |
0 |
2 |
2 |
Married with Kids |
1 |
0 |
1 |
Single |
1 |
0 |
1 |
Single with Kids |
0 |
0 |
2 |
Female |
0 |
0 |
1 |
Male |
0 |
0 |
1 |
Squared Cosines for the Column Points |
|
Dim1 |
Dim2 |
American |
0.0974 |
0.3952 |
European |
0.0005 |
0.0468 |
Japanese |
0.1005 |
0.2136 |
Large |
0.0695 |
0.3530 |
Medium |
0.0480 |
0.0068 |
Small |
0.1544 |
0.2281 |
Family |
0.1919 |
0.1411 |
Sporty |
0.2027 |
0.2085 |
Work |
0.0006 |
0.0046 |
1 Income |
0.5550 |
0.2441 |
2 Incomes |
0.5550 |
0.2441 |
Own |
0.3975 |
0.0234 |
Rent |
0.3975 |
0.0234 |
Married |
0.0753 |
0.2742 |
Married with Kids |
0.3258 |
0.0508 |
Single |
0.6364 |
0.0416 |
Single with Kids |
0.0090 |
0.0359 |
Female |
0.0912 |
0.0341 |
Male |
0.0912 |
0.0341 |
|
Multiple correspondence analysis locates all the categories in a
Euclidean space. The first two dimensions of this space are plotted to
examine the associations among the categories. The top-right quadrant
of the plot shows that the categories single, single with kids, 1
income, and renting a home are associated. Proceeding clockwise, the
categories sporty, small, and Japanese are associated. The
bottom-left quadrant shows the association between being married,
owning your own home, and having two incomes. Having children is
associated with owning a large American family car. Such information
could be used in market research to identify target audiences for
advertisements.
This interpretation is based on points found in approximately the same
direction from the origin and in approximately the same region of the
space. Distances between points do not have a straightforward
interpretation in multiple correspondence analysis. The geometry of
multiple correspondence analysis is not a simple generalization of the
geometry of simple correspondence analysis (Greenacre and Hastie 1987;
Greenacre 1988).
Output 24.2.2: Plot of Multiple Correspondence Analysis of a Burt Table
If you want to perform a multiple correspondence analysis and get scores
for the individuals, you can specify the BINARY option to analyze the binary
table.
title 'Car Owners and Car Attributes';
title2 'Binary Table';
*---Perform Multiple Correspondence Analysis---;
proc corresp data=Cars binary;
ods select RowCoors;
tables Origin Size Type Income Home Marital Sex;
run;
Output 24.2.3: Correspondence Analysis of a Binary Table
Car Owners and Car Attributes |
Binary Table |
Row Coordinates |
|
Dim1 |
Dim2 |
1 |
-0.4093 |
1.0878 |
2 |
0.8198 |
-0.2221 |
3 |
-0.2193 |
-0.5328 |
4 |
0.4382 |
1.1799 |
5 |
-0.6750 |
0.3600 |
6 |
-0.1778 |
0.1441 |
7 |
-0.9375 |
0.6846 |
8 |
-0.7405 |
-0.1539 |
9 |
-0.3027 |
-0.2749 |
10 |
-0.7263 |
-0.0803 |
11 |
-0.2965 |
-0.6420 |
12 |
0.5522 |
-0.0640 |
13 |
-0.4552 |
-0.3846 |
14 |
0.8198 |
-0.2221 |
15 |
-0.1524 |
-0.1371 |
16 |
-0.4093 |
1.0878 |
17 |
0.6381 |
0.1563 |
18 |
0.3140 |
0.5835 |
19 |
0.0554 |
0.0913 |
20 |
-0.5880 |
-0.0442 |
21 |
-0.0176 |
-0.5414 |
22 |
-0.4933 |
-0.0183 |
23 |
-0.4093 |
1.0878 |
24 |
0.5726 |
-0.3576 |
25 |
-0.7405 |
-0.1539 |
26 |
-0.3682 |
-0.7888 |
27 |
1.1739 |
-0.1209 |
28 |
-0.4552 |
-0.3846 |
29 |
-0.1006 |
-0.9468 |
30 |
-0.1299 |
-0.4587 |
31 |
-0.5446 |
-0.4587 |
32 |
0.9922 |
0.2574 |
33 |
-0.6393 |
-0.4845 |
34 |
0.1752 |
0.0303 |
35 |
-0.6652 |
0.7334 |
36 |
1.0011 |
0.0629 |
37 |
0.3958 |
0.6358 |
38 |
-0.7405 |
-0.1539 |
39 |
-0.0065 |
0.4087 |
40 |
-0.1006 |
-0.9468 |
41 |
-0.4552 |
-0.3846 |
42 |
0.4856 |
0.0466 |
43 |
0.8486 |
-0.0468 |
44 |
0.0549 |
0.7546 |
45 |
0.9028 |
0.1833 |
46 |
-0.6457 |
-0.1280 |
47 |
0.4652 |
0.3402 |
48 |
0.0804 |
0.0045 |
49 |
-0.0429 |
-0.8629 |
50 |
-0.4729 |
-0.3119 |
51 |
-0.2992 |
0.6535 |
52 |
-0.6457 |
-0.1280 |
53 |
-0.3204 |
-0.2022 |
54 |
0.3759 |
0.2661 |
55 |
-0.0469 |
-0.0534 |
56 |
-0.1210 |
-0.6532 |
57 |
0.4382 |
1.1799 |
58 |
-0.0429 |
-0.8629 |
59 |
-0.9375 |
0.6846 |
60 |
-0.3081 |
0.7572 |
61 |
0.5161 |
-0.0885 |
62 |
-0.3204 |
-0.2022 |
63 |
-0.2992 |
0.6535 |
64 |
-0.1175 |
0.2751 |
65 |
-0.2193 |
-0.5328 |
66 |
-0.5880 |
-0.0442 |
67 |
-0.7851 |
0.7944 |
68 |
-0.9375 |
0.6846 |
69 |
1.0226 |
0.1224 |
70 |
-0.1954 |
-0.9726 |
71 |
1.1739 |
-0.1209 |
72 |
0.5580 |
1.1189 |
73 |
-0.3722 |
0.0208 |
74 |
0.1384 |
0.5039 |
75 |
0.5161 |
-0.0885 |
76 |
-0.2122 |
0.2493 |
77 |
-0.3531 |
-0.3728 |
78 |
0.6806 |
-0.1119 |
79 |
-0.5022 |
0.1762 |
80 |
-0.3204 |
-0.2022 |
81 |
-0.1883 |
0.6962 |
82 |
0.2179 |
0.8073 |
83 |
-0.8275 |
0.2503 |
84 |
0.2535 |
-0.8457 |
85 |
-0.3531 |
-0.3728 |
86 |
0.7300 |
0.3672 |
87 |
-0.5535 |
-0.2642 |
88 |
-0.3921 |
-0.3490 |
89 |
-0.9375 |
0.6846 |
90 |
0.1565 |
-0.2394 |
91 |
0.0818 |
-0.3088 |
92 |
1.0215 |
-0.2306 |
93 |
1.0226 |
0.1224 |
94 |
-0.2812 |
-0.2154 |
95 |
0.0518 |
-0.8371 |
96 |
-0.3204 |
-0.2022 |
97 |
-0.5348 |
-0.0853 |
98 |
-0.6296 |
-0.1111 |
99 |
-0.1210 |
-0.6532 |
100 |
-0.3717 |
-0.6426 |
101 |
-0.5739 |
0.0294 |
102 |
-0.4933 |
-0.0183 |
103 |
-0.1905 |
-0.3576 |
104 |
-0.2222 |
-0.3226 |
105 |
-0.3141 |
-0.5587 |
106 |
0.5487 |
0.0822 |
107 |
-0.5563 |
-0.0539 |
108 |
0.2242 |
-0.3576 |
109 |
0.1565 |
0.4614 |
110 |
-0.1006 |
-0.9468 |
111 |
0.7539 |
-0.0726 |
112 |
0.8193 |
0.4413 |
113 |
1.1739 |
-0.1209 |
114 |
0.6450 |
0.7147 |
115 |
0.8498 |
0.3062 |
116 |
0.1764 |
-0.3575 |
117 |
0.0818 |
-0.3088 |
118 |
-0.3141 |
-0.5587 |
119 |
0.4652 |
0.3402 |
120 |
0.7504 |
0.0736 |
121 |
0.7504 |
0.0736 |
122 |
0.3128 |
0.2305 |
123 |
-0.5446 |
-0.4587 |
124 |
-0.4010 |
-0.1545 |
125 |
-0.2992 |
0.6535 |
126 |
-0.5535 |
-0.2642 |
127 |
0.8198 |
-0.2221 |
128 |
-0.1264 |
1.0796 |
129 |
0.2219 |
-0.0022 |
130 |
0.1187 |
-0.4414 |
131 |
0.6470 |
-0.0382 |
132 |
-0.1006 |
-0.9468 |
133 |
-0.8275 |
0.2503 |
134 |
-0.6393 |
-0.4845 |
135 |
0.2039 |
1.0178 |
136 |
-0.7851 |
0.7944 |
137 |
0.2546 |
-0.4927 |
138 |
-0.3531 |
-0.3728 |
139 |
-0.6546 |
0.0665 |
140 |
-0.5446 |
-0.4587 |
141 |
-0.7165 |
0.2931 |
142 |
0.2179 |
0.8073 |
143 |
-0.7263 |
-0.0803 |
144 |
0.2916 |
-0.6252 |
145 |
-0.8505 |
0.2805 |
146 |
0.2712 |
-0.3317 |
147 |
-0.4093 |
1.0878 |
148 |
0.6674 |
-0.3318 |
149 |
-0.3204 |
-0.2022 |
150 |
0.8198 |
-0.2221 |
151 |
0.4440 |
-0.5155 |
152 |
0.2634 |
-0.2738 |
153 |
-0.3734 |
-0.0793 |
154 |
-0.6750 |
0.3600 |
155 |
0.7250 |
0.3548 |
156 |
-0.3746 |
-0.4323 |
157 |
-0.9375 |
0.6846 |
158 |
-0.5446 |
-0.4587 |
159 |
1.0011 |
0.0629 |
160 |
-0.1954 |
-0.9726 |
161 |
-0.2006 |
-0.2631 |
162 |
-0.9375 |
0.6846 |
163 |
-0.8275 |
0.2503 |
164 |
-0.5348 |
0.0055 |
165 |
-0.4552 |
-0.3846 |
166 |
-0.4093 |
1.0878 |
167 |
0.2179 |
0.8073 |
168 |
-0.8275 |
0.2503 |
169 |
1.0215 |
-0.2306 |
170 |
-0.7851 |
0.7944 |
171 |
-0.7263 |
-0.0803 |
172 |
0.7981 |
-0.4144 |
173 |
0.1035 |
-0.1165 |
174 |
-0.4729 |
-0.3119 |
175 |
0.0417 |
0.5347 |
176 |
-0.3734 |
-0.0793 |
177 |
-0.7851 |
0.7944 |
178 |
0.3963 |
-0.0275 |
179 |
0.8198 |
-0.2221 |
180 |
-0.3717 |
-0.6426 |
181 |
-0.8177 |
0.6237 |
182 |
-0.2275 |
0.7095 |
183 |
-0.3531 |
-0.3728 |
184 |
-0.0429 |
-0.8629 |
185 |
0.0554 |
0.0913 |
186 |
-0.7263 |
-0.0803 |
187 |
0.1764 |
0.1304 |
188 |
0.7251 |
-0.2479 |
189 |
-0.5022 |
0.1762 |
190 |
0.8198 |
-0.2221 |
191 |
-0.5446 |
-0.4587 |
192 |
1.0226 |
0.1224 |
193 |
0.3997 |
0.4290 |
194 |
0.0518 |
-0.8371 |
195 |
-0.1361 |
0.7062 |
196 |
1.0215 |
-0.2306 |
197 |
0.5487 |
0.0822 |
198 |
1.0011 |
0.0629 |
199 |
-0.2992 |
0.6535 |
200 |
1.1739 |
-0.1209 |
201 |
-0.2916 |
-0.0269 |
202 |
-0.4933 |
-0.0183 |
203 |
-0.6457 |
-0.1280 |
204 |
-0.7263 |
-0.0803 |
205 |
-0.2006 |
-0.2631 |
206 |
0.2234 |
0.1563 |
207 |
0.1560 |
0.4240 |
208 |
0.8409 |
0.5007 |
209 |
0.4945 |
-0.1479 |
210 |
0.1287 |
0.1305 |
211 |
1.1739 |
-0.1209 |
212 |
0.1348 |
-0.4317 |
213 |
-0.1006 |
-0.9468 |
214 |
-0.0163 |
-0.0555 |
215 |
-0.5739 |
0.0294 |
216 |
1.1739 |
-0.1209 |
217 |
0.7504 |
0.0736 |
218 |
-0.4933 |
-0.0183 |
219 |
0.5482 |
0.7455 |
220 |
-0.1264 |
0.4696 |
221 |
-0.0493 |
-0.5064 |
222 |
0.6000 |
-0.0642 |
223 |
-0.4729 |
-0.3119 |
224 |
0.8436 |
-0.0591 |
225 |
-0.6750 |
0.3600 |
226 |
-0.5022 |
0.1762 |
227 |
1.0226 |
0.1224 |
228 |
0.4382 |
1.1799 |
229 |
-0.8275 |
0.2503 |
230 |
-0.3717 |
-0.6426 |
231 |
0.5775 |
0.2575 |
232 |
0.7300 |
0.3672 |
233 |
1.0215 |
-0.2306 |
234 |
1.0215 |
-0.2306 |
235 |
0.7251 |
-0.2479 |
236 |
0.4059 |
-0.7360 |
237 |
0.9028 |
0.1833 |
238 |
-0.8275 |
0.2503 |
239 |
-0.6546 |
0.0665 |
240 |
0.6669 |
0.3316 |
241 |
-0.1006 |
-0.9468 |
242 |
0.4272 |
0.1197 |
243 |
-0.8364 |
0.3540 |
244 |
-0.6750 |
0.3600 |
245 |
0.8198 |
-0.2221 |
246 |
0.0841 |
1.0787 |
247 |
-0.1794 |
0.5925 |
248 |
-0.2193 |
-0.5328 |
249 |
0.0841 |
1.0787 |
250 |
-0.1175 |
0.2751 |
251 |
-0.0206 |
0.4810 |
252 |
-0.1441 |
-0.5323 |
253 |
0.5482 |
0.7455 |
254 |
0.8193 |
0.4413 |
255 |
-0.6457 |
-0.1280 |
256 |
-0.6065 |
-0.1413 |
257 |
-0.1441 |
-0.5323 |
258 |
-0.4552 |
-0.3846 |
259 |
0.8080 |
0.1575 |
260 |
0.6685 |
0.0213 |
261 |
0.9267 |
-0.2565 |
262 |
0.8397 |
0.1477 |
263 |
-0.4336 |
-0.3251 |
264 |
-0.3298 |
0.5648 |
265 |
0.4945 |
-0.1479 |
266 |
-0.2018 |
-0.6162 |
267 |
-0.2519 |
-0.7035 |
268 |
0.5522 |
-0.0640 |
269 |
-0.2222 |
-0.3226 |
270 |
-0.4093 |
1.0878 |
271 |
-0.5446 |
-0.4587 |
272 |
0.5725 |
0.2451 |
273 |
-0.4823 |
0.4551 |
274 |
0.4059 |
-0.7360 |
275 |
-0.0380 |
-0.2479 |
276 |
0.8198 |
-0.2221 |
277 |
-0.8364 |
0.3540 |
278 |
-0.2519 |
-0.7035 |
279 |
-0.6457 |
-0.1280 |
280 |
0.1764 |
-0.3575 |
281 |
0.2535 |
-0.8457 |
282 |
-0.5259 |
-0.1890 |
283 |
-0.8275 |
0.2503 |
284 |
0.2184 |
0.1440 |
285 |
0.2184 |
0.1440 |
286 |
-0.8275 |
0.2503 |
287 |
0.0518 |
-0.8371 |
288 |
-0.5348 |
0.0055 |
289 |
-0.2519 |
-0.7035 |
290 |
-0.6457 |
-0.1280 |
291 |
-0.2193 |
-0.5328 |
292 |
0.0841 |
1.0787 |
293 |
-0.5552 |
0.2991 |
294 |
0.1348 |
-0.4317 |
295 |
-0.2158 |
-0.6791 |
296 |
0.3265 |
-0.2130 |
297 |
-0.2965 |
-0.6420 |
298 |
-0.1210 |
-0.6532 |
299 |
-0.3921 |
-0.3490 |
300 |
-0.0469 |
-0.0534 |
301 |
0.1941 |
0.6444 |
302 |
0.1654 |
0.2669 |
303 |
0.5726 |
-0.3576 |
304 |
-0.4540 |
-0.0316 |
305 |
0.7300 |
0.3672 |
306 |
0.0554 |
0.0913 |
307 |
-0.6457 |
-0.1280 |
308 |
-0.8275 |
0.2503 |
309 |
0.3759 |
0.2661 |
310 |
0.1729 |
-0.2113 |
311 |
0.5482 |
0.7455 |
312 |
-0.5880 |
-0.0442 |
313 |
-0.4729 |
-0.3119 |
314 |
-0.2122 |
0.2493 |
315 |
0.9028 |
0.1833 |
316 |
1.0226 |
0.1224 |
317 |
0.4868 |
0.3996 |
318 |
-0.1210 |
-0.6532 |
319 |
-0.0995 |
-0.5938 |
320 |
1.0226 |
0.1224 |
321 |
-0.1905 |
-0.3576 |
322 |
0.8198 |
-0.2221 |
323 |
-0.7405 |
-0.1539 |
324 |
-0.5535 |
-0.2642 |
325 |
0.9028 |
0.1833 |
326 |
0.6669 |
0.3316 |
327 |
0.8397 |
0.1477 |
328 |
-0.9375 |
0.6846 |
329 |
0.0518 |
-0.8371 |
330 |
-0.2992 |
0.6535 |
331 |
1.0791 |
-0.1468 |
332 |
0.3958 |
0.6358 |
333 |
-0.1905 |
-0.3576 |
334 |
0.5482 |
0.7455 |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.