Chapter Contents |
Previous |
Next |
The CALIS Procedure |
Option |
Short Description |
Estimation Methods | |
G4=i | algorithm for computing STDERR |
Optimization Techniques | |
TECHNIQUE=name | minimization method |
UPDATE=name | update technique |
LINESEARCH=i | line-search method |
FCONV=r | relative change function convergence criterion |
GCONV=r | relative gradient convergence criterion |
INSTEP=r | initial step length (SALPHA=, RADIUS=) |
LSPRECISION=r | line-search precision |
MAXFUNC=i | maximum number of function calls |
MAXITER=i <n> | maximum number of iterations |
Miscellaneous Options | |
ASINGULAR=r | absolute singularity criterion for inversion of the information matrix |
COVSING=r | singularity tolerance of the information matrix |
MSINGULAR=r | relative M singularity criterion for inversion of the information matrix |
SINGULAR=r | singularity criterion for inversion of the Hessian |
VSINGULAR=r | relative V singularity criterion for inversion of the information matrix |
Option |
Short Description |
Options Used by All Techniques | |
ABSCONV=r | absolute function convergence criterion |
MAXFUNC=i | maximum number of function calls |
MAXITER=i <n> | maximum number of iterations |
MAXTIME=r | maximum CPU time |
MINITER=i | minimum number of iterations |
Options for Unconstrained and Linearly Constrained Techniques | |
ABSFCONV=r <n> | absolute change function convergence criterion |
ABSGCONV=r <n> | absolute gradient convergence criterion |
ABSXCONV=r <n> | absolute change parameter convergence criterion |
FCONV=r <n> | relative change function convergence criterion |
FCONV2=r <n> | function convergence criterion |
FDIGITS=r | precision in computation of the objective function |
FSIZE=r | parameter for FCONV= and GCONV= |
GCONV=r <n> | relative gradient convergence criterion |
GCONV2=r <n> | relative gradient convergence criterion |
XCONV=r <n> | relative change parameter convergence criterion |
XSIZE=r | parameter for XCONV= |
Options for Nonlinearly Constrained Techniques | |
ABSGCONV=r <n> | maximum absolute gradient of Lagrange function criterion |
FCONV2=r <n> | predicted objective function reduction criterion |
GCONV=r <n> | normalized predicted objective function reduction criterion |
Option |
Short Description |
Options for the Approximate Covariance Matrix of Parameter Estimates | |
CFACTOR=r | scalar factor for STDERR |
NOHLF | use Hessian of the objective function for STDERR |
Options for Additional Displayed Output | |
PALL | display initial and final optimization values |
PCRPJAC | display approximate Hessian matrix |
PHESSIAN | display Hessian matrix |
PHISTORY | display optimization history |
PINIT | display initial values and derivatives (PALL) |
PNLCJAC | display Jacobian matrix of nonlinear constraints (PALL) |
display results of the optimization process | |
Additional Options for Optimization Techniques | |
DAMPSTEP< =r > | controls initial line-search step size |
HESCAL=n | scaling version of Hessian or Jacobian |
LCDEACT=r | Lagrange multiplier threshold of constraint |
LCEPSILON=r | range for boundary and linear constraints |
LCSINGULAR=r | QR decomposition linear dependence criterion |
NOEIGNUM | suppress computation of matrices |
RESTART=i | restart algorithm with a steepest descent direction |
VERSION=1 | 2 | quasi-Newton optimization technique version |
TECH= | MAXFUNC default |
LEVMAR, NEWRAP, NRRIDG, TRUREG | i=125 |
DBLDOG, QUANEW | i=500 |
CONGRA | i=1000 |
TECH= | MAXITER default |
LEVMAR, NEWRAP, NRRIDG, TRUREG | i=50 |
DBLDOG, QUANEW | i=200 |
CONGRA | i=400 |
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.