Chapter Contents |
Previous |
Next |
PROBPLOT Statement |
Parameters | |||||
Distribution | Density Function p(x) | Range | Location | Scale | Shape |
Beta | , | ||||
Exponential | |||||
Gamma | |||||
Lognormal | |||||
(3-parameter) | |||||
Normal | all x | ||||
Weibull | c | ||||
(3-parameter) | |||||
Weibull | c | ||||
(2-parameter) | (known) |
You can request these distributions with the BETA, EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, WEIBULL, and WEIBULL2 options, respectively. If you do not specify a distribution option, a normal probability plot is created.
Distribution Keyword | Mandatory Shape Parameter Option | Range |
BETA | ALPHA=, BETA= | , |
EXPONENTIAL | None | |
GAMMA | ALPHA= | |
LOGNORMAL | SIGMA= | |
NORMAL | None | |
WEIBULL | C=c | c>0 |
WEIBULL2 | None |
You can visually estimate the value of a shape parameter by specifying a list of values for the shape parameter option. The PROBPLOT statement produces a separate plot for each value. You can then use the value of the shape parameter producing the most nearly linear point pattern. Alternatively, you can request that the plot be created using an estimated shape parameter. For an example, see "Creating Lognormal Probability Plots".
The following table shows how the specified parameters determine the intercept* and slope of the line:
Table 9.15: Intercept and Slope of Distribution Reference LineParameters | Linear Pattern | ||||
Distribution | Location | Scale | Shape | Intercept | Slope |
Beta | , | ||||
Exponential | |||||
Gamma | |||||
Lognormal | |||||
Normal | |||||
Weibull (3-parameter) | c | ||||
Weibull (2-parameter) | (known) | c | [1/c] |
For the LOGNORMAL and WEIBULL2 options, you can specify the slope directly with the SLOPE= option. That is, for the LOGNORMAL option, specifying THETA=and SLOPE= displays the same line as specifying THETA= and ZETA=. For the WEIBULL2 option, specifying SIGMA= and SLOPE=[1/(c0)] displays the same line as specifying SIGMA= and C=c0.
Chapter Contents |
Previous |
Next |
Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.