Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
PROBPLOT Statement

Summary of Theoretical Distributions

You can use the PROBPLOT statement to request probability plots based on the theoretical distributions summarized in the following table:

Table 9.13: Distributions and Parameters
      Parameters
Distribution Density Function p(x) Range Location Scale Shape
      
Beta\frac{(x-\theta )^{\alpha-1}(\theta+\sigma-x)^{\beta-1}}
{B(\alpha,\beta)\sigma^{(\alpha+\beta-1)}}\theta\lt x \lt\theta+\sigma\theta\sigma\alpha, \beta
Exponential\frac{1}{\sigma}\exp(-\frac{x-\theta}{\sigma})x \geq \theta \theta\sigma 
Gamma\frac{1}{\sigma\Gamma(\alpha)}
(\frac{x-\theta}{\sigma})^{\alpha-1}
\exp(-\frac{x-\theta}{\sigma})x\gt\theta\theta\sigma\alpha
Lognormal\frac{1}{\sigma\sqrt{2\pi}(x-\theta)}
\exp(-\frac{(\log(x-\theta)-\zeta)^2}{2\sigma^2})x\gt\theta\theta\zeta\sigma
(3-parameter)     
Normal\frac{1}{\sigma\sqrt{2\pi}}
\exp(-\frac{(x-\mu)^2}{2\sigma^2})all x\mu\sigma 
Weibull\frac{c}{\sigma}(\frac{x-\theta}{\sigma})^{c-1}
\exp(-(\frac{x-\theta}{\sigma})^c)x\gt\theta\theta\sigmac
(3-parameter)     
Weibull\frac{c}{\sigma}(\frac{x-\theta_0}{\sigma})^{c-1}
\exp(-(\frac{x-\theta_0}{\sigma})^c)x\gt\theta_0\theta_0\sigmac
(2-parameter)  (known)  

You can request these distributions with the BETA, EXPONENTIAL, GAMMA, LOGNORMAL, NORMAL, WEIBULL, and WEIBULL2 options, respectively. If you do not specify a distribution option, a normal probability plot is created.

Shape Parameters

Some of the distribution options in the PROBPLOT statement require you to specify one or two shape parameters in parentheses after the distribution keyword. These are summarized in Table 9.14.

Table 9.14: Shape Parameter Options for the PROBPLOT Statement
Distribution Keyword Mandatory Shape Parameter Option Range
BETAALPHA=\alpha, BETA=\beta\alpha\gt, \beta\gt
EXPONENTIALNone 
GAMMAALPHA=\alpha\alpha\gt
LOGNORMALSIGMA=\sigma\sigma \gt 0
NORMALNone 
WEIBULLC=cc>0
WEIBULL2None 

You can visually estimate the value of a shape parameter by specifying a list of values for the shape parameter option. The PROBPLOT statement produces a separate plot for each value. You can then use the value of the shape parameter producing the most nearly linear point pattern. Alternatively, you can request that the plot be created using an estimated shape parameter. For an example, see "Creating Lognormal Probability Plots".

Location and Scale Parameters

If you specify the location and scale parameters for a distribution (or if you request estimates for these parameters), a diagonal distribution reference line is displayed on the plot. (An exception is the two-parameter Weibull distribution, for which a line is displayed when you specify or estimate the scale and shape parameters.) Agreement between this line and the point pattern indicates that the distribution with these parameters is a good fit. For illustrations, see Example 9.1 and Example 9.2.

The following table shows how the specified parameters determine the intercept* and slope of the line:

Table 9.15: Intercept and Slope of Distribution Reference Line
  Parameters Linear Pattern
Distribution Location Scale Shape Intercept Slope
Beta\theta\sigma\alpha , \beta\theta\sigma
Exponential\theta\sigma \theta\sigma
Gamma\theta\sigma\alpha\theta\sigma
Lognormal\theta\zeta\sigma\theta\exp(\zeta)
Normal\mu\sigma \mu\sigma
Weibull (3-parameter)\theta\sigmac\theta\sigma
Weibull (2-parameter)\theta_0 (known)\sigmac\log(\sigma)[1/c]

For the LOGNORMAL and WEIBULL2 options, you can specify the slope directly with the SLOPE= option. That is, for the LOGNORMAL option, specifying THETA=\theta_0and SLOPE=\exp(\zeta_0) displays the same line as specifying THETA=\theta_0 and ZETA=\zeta_0. For the WEIBULL2 option, specifying SIGMA=\sigma_0 and SLOPE=[1/(c0)] displays the same line as specifying SIGMA=\sigma_0 and C=c0.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.