Specialized Control Charts |
Diagnosing and Modeling Autocorrelation
You can diagnose autocorrelation with an autocorrelation
plot created with the ARIMA procedure.
proc arima data=chemical;
identify var = xt;
run;
Refer to SAS/ETS User's Guide
for details on the ARIMA procedure.
The plot, shown in Figure 49.2,
indicates that the data are highly autocorrelated with
a lag 1 autocorrelation of 0.83.
Autocorrelations |
Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 |
Std Error |
0 |
48.348400 |
1.00000 |
| |********************| |
0 |
1 |
40.141884 |
0.83026 |
| . |***************** | |
0.100000 |
2 |
34.732168 |
0.71837 |
| . |************** | |
0.154229 |
3 |
29.950852 |
0.61948 |
| . |************ | |
0.184683 |
4 |
24.739536 |
0.51169 |
| . |********** | |
0.204409 |
5 |
20.594420 |
0.42596 |
| . |********* | |
0.216840 |
6 |
18.427704 |
0.38114 |
| . |********. | |
0.225052 |
7 |
17.400188 |
0.35989 |
| . |******* . | |
0.231417 |
8 |
17.621272 |
0.36446 |
| . |******* . | |
0.236948 |
9 |
18.363756 |
0.37982 |
| . |******** . | |
0.242489 |
10 |
16.754040 |
0.34653 |
| . |******* . | |
0.248367 |
11 |
16.844924 |
0.34841 |
| . |******* . | |
0.253156 |
12 |
17.137208 |
0.35445 |
| . |******* . | |
0.257906 |
13 |
16.884092 |
0.34922 |
| . |******* . | |
0.262732 |
14 |
17.927976 |
0.37081 |
| . |******* . | |
0.267334 |
15 |
16.801860 |
0.34752 |
| . |******* . | |
0.272429 |
16 |
17.076544 |
0.35320 |
| . |******* . | |
0.276826 |
17 |
17.815028 |
0.36847 |
| . |******* . | |
0.281296 |
18 |
16.501312 |
0.34130 |
| . |******* . | |
0.286082 |
19 |
14.662196 |
0.30326 |
| . |****** . | |
0.290126 |
20 |
12.612280 |
0.26086 |
| . |***** . | |
0.293278 |
21 |
11.105364 |
0.22969 |
| . |***** . | |
0.295590 |
22 |
8.891648 |
0.18391 |
| . |**** . | |
0.297369 |
23 |
6.794132 |
0.14052 |
| . |*** . | |
0.298504 |
24 |
4.732816 |
0.09789 |
| . |** . | |
0.299165 |
"." marks two standard errors |
Partial Autocorrelations |
Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 |
1 |
0.83026 |
| . |***************** | |
2 |
0.09346 |
| . |** . | |
3 |
0.00385 |
| . | . | |
4 |
-0.07340 |
| . *| . | |
5 |
-0.00278 |
| . | . | |
6 |
0.09013 |
| . |** . | |
7 |
0.08781 |
| . |** . | |
8 |
0.10327 |
| . |** . | |
9 |
0.07240 |
| . |* . | |
10 |
-0.11637 |
| . **| . | |
11 |
0.08210 |
| . |** . | |
12 |
0.07580 |
| . |** . | |
13 |
0.04429 |
| . |* . | |
14 |
0.11661 |
| . |** . | |
15 |
-0.10446 |
| . **| . | |
16 |
0.07703 |
| . |** . | |
17 |
0.07376 |
| . |* . | |
18 |
-0.07080 |
| . *| . | |
19 |
-0.02814 |
| . *| . | |
20 |
-0.08559 |
| . **| . | |
21 |
0.01962 |
| . | . | |
22 |
-0.04599 |
| . *| . | |
23 |
-0.07878 |
| . **| . | |
24 |
-0.02303 |
| . | . | |
|
Figure 49.2: Autocorrelation Plots for Chemical Data
The partial autocorrelation plot in Figure 49.2
suggests that the data can be modeled with a first-order
autoregressive model, commonly referred to as an AR(1) model.
You can fit this model with the ARIMA procedure. The
results in Figure 49.3 show that the equation of
the fitted model is
.
proc arima data=chemical;
identify var=xt;
estimate p=1 method=ml;
run;
Maximum Likelihood Estimation |
Parameter |
Estimate |
Standard Error |
t Value |
Approx Pr > |t| |
Lag |
MU |
85.28375 |
2.32973 |
36.61 |
<.0001 |
0 |
AR1,1 |
0.84694 |
0.05221 |
16.22 |
<.0001 |
1 |
Constant Estimate |
13.05329 |
Variance Estimate |
14.27676 |
Std Error Estimate |
3.77846 |
AIC |
552.8942 |
SBC |
558.1045 |
Number of Residuals |
100 |
|
Figure 49.3: Fitted AR(1) Model
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.