Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Specialized Control Charts

Diagnosing and Modeling Autocorrelation

You can diagnose autocorrelation with an autocorrelation plot created with the ARIMA procedure.
   proc arima data=chemical;
      identify var = xt;
   run;
Refer to SAS/ETS User's Guide for details on the ARIMA procedure. The plot, shown in Figure 49.2, indicates that the data are highly autocorrelated with a lag 1 autocorrelation of 0.83.

 
The ARIMA Procedure

Autocorrelations
Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1 Std Error
0 48.348400 1.00000 |                    |********************| 0
1 40.141884 0.83026 |                .   |*****************   | 0.100000
2 34.732168 0.71837 |              .     |**************      | 0.154229
3 29.950852 0.61948 |             .      |************        | 0.184683
4 24.739536 0.51169 |            .       |**********          | 0.204409
5 20.594420 0.42596 |           .        |*********           | 0.216840
6 18.427704 0.38114 |           .        |********.           | 0.225052
7 17.400188 0.35989 |           .        |******* .           | 0.231417
8 17.621272 0.36446 |           .        |******* .           | 0.236948
9 18.363756 0.37982 |          .         |******** .          | 0.242489
10 16.754040 0.34653 |          .         |*******  .          | 0.248367
11 16.844924 0.34841 |          .         |*******  .          | 0.253156
12 17.137208 0.35445 |          .         |*******  .          | 0.257906
13 16.884092 0.34922 |         .          |*******   .         | 0.262732
14 17.927976 0.37081 |         .          |*******   .         | 0.267334
15 16.801860 0.34752 |         .          |*******   .         | 0.272429
16 17.076544 0.35320 |         .          |*******   .         | 0.276826
17 17.815028 0.36847 |         .          |*******   .         | 0.281296
18 16.501312 0.34130 |         .          |*******   .         | 0.286082
19 14.662196 0.30326 |        .           |******     .        | 0.290126
20 12.612280 0.26086 |        .           |*****      .        | 0.293278
21 11.105364 0.22969 |        .           |*****      .        | 0.295590
22 8.891648 0.18391 |        .           |****       .        | 0.297369
23 6.794132 0.14052 |        .           |***        .        | 0.298504
24 4.732816 0.09789 |        .           |**         .        | 0.299165

"." marks two standard errors

 

Partial Autocorrelations
Lag Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
1 0.83026 |                .   |*****************   |
2 0.09346 |                .   |** .                |
3 0.00385 |                .   |   .                |
4 -0.07340 |                .  *|   .                |
5 -0.00278 |                .   |   .                |
6 0.09013 |                .   |** .                |
7 0.08781 |                .   |** .                |
8 0.10327 |                .   |** .                |
9 0.07240 |                .   |*  .                |
10 -0.11637 |                . **|   .                |
11 0.08210 |                .   |** .                |
12 0.07580 |                .   |** .                |
13 0.04429 |                .   |*  .                |
14 0.11661 |                .   |** .                |
15 -0.10446 |                . **|   .                |
16 0.07703 |                .   |** .                |
17 0.07376 |                .   |*  .                |
18 -0.07080 |                .  *|   .                |
19 -0.02814 |                .  *|   .                |
20 -0.08559 |                . **|   .                |
21 0.01962 |                .   |   .                |
22 -0.04599 |                .  *|   .                |
23 -0.07878 |                . **|   .                |
24 -0.02303 |                .   |   .                |
Figure 49.2: Autocorrelation Plots for Chemical Data

The partial autocorrelation plot in Figure 49.2 suggests that the data can be modeled with a first-order autoregressive model, commonly referred to as an AR(1) model.


		\(
 \tilde{x}_{t} \equiv x_{t} - \mu =
 \phi_{0} + \phi_{1} \tilde{x}_{t-1} + \epsilon_{t}
\)
You can fit this model with the ARIMA procedure. The results in Figure 49.3 show that the equation of the fitted model is \tilde{x}_{t} = 13.05 + 0.847 \tilde{x}_{t-1}.
   proc arima data=chemical;
      identify var=xt;
      estimate p=1 method=ml;
   run;

 
The ARIMA Procedure

Maximum Likelihood Estimation
Parameter Estimate Standard Error t Value Approx
Pr > |t|
Lag
MU 85.28375 2.32973 36.61 <.0001 0
AR1,1 0.84694 0.05221 16.22 <.0001 1
 
Constant Estimate 13.05329
Variance Estimate 14.27676
Std Error Estimate 3.77846
AIC 552.8942
SBC 558.1045
Number of Residuals 100
Figure 49.3: Fitted AR(1) Model

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.