The RELIABILITY Procedure |
Regression Modeling
This example is an illustration of a Weibull regression model
using a load accelerated life test of
rolling bearings, with data provided by Nelson (1990, p. 305).
Bearings are tested at four different loads, and lifetimes
in 106 of revolutions are measured.
The data are shown in Table 30.3.
An outlier identified by Nelson (1990) is omitted.
Table 30.3: Bearing Lifetime Data
Load
|
Life (106 Revolutions)
|
0.87 | 1.67 | 2.2 | 2.51 | 3.00 | 3.90 | 4.70 | 7.53 | 14.7 | 27.76 | 37.4 |
0.99 | 0.80 | 1.0 | 1.37 | 2.25 | 2.95 | 3.70 | 6.07 | 6.65 | 7.05 | 7.37 |
1.09 | 0.18 | 0.2 | 0.24 | 0.26 | 0.32 | 0.32 | 0.42 | 0.44 | 0.88 | |
1.18 | 0.073 | 0.098 | 0.117 | 0.135 | 0.175 | 0.262 | 0.270 | 0.350 | 0.386 | 0.456 |
These data are modeled with a Weibull regression model in which
the independent variable is the logarithm of the load.
The model is
-
where is the location parameter of the extreme value distribution
and
-
xi = log( load)
for the ith bearing.
The following statements create and list a SAS data set containing the
loads, log loads, and bearing lifetimes.
data bearing;
input load life;
lload = log(load);
datalines;
0.87 1.67
0.87 2.2
.
.
.
1.18 .456
;
proc print data=bearing;
run;
Figure 30.13 shows a listing of the bearing data.
Obs |
load |
life |
lload |
1 |
0.87 |
1.670 |
-0.13926 |
2 |
0.87 |
2.200 |
-0.13926 |
3 |
0.87 |
2.510 |
-0.13926 |
4 |
0.87 |
3.000 |
-0.13926 |
5 |
0.87 |
3.900 |
-0.13926 |
6 |
0.87 |
4.700 |
-0.13926 |
7 |
0.87 |
7.530 |
-0.13926 |
8 |
0.87 |
14.700 |
-0.13926 |
9 |
0.87 |
27.760 |
-0.13926 |
10 |
0.87 |
37.400 |
-0.13926 |
11 |
0.99 |
0.800 |
-0.01005 |
12 |
0.99 |
1.000 |
-0.01005 |
13 |
0.99 |
1.370 |
-0.01005 |
14 |
0.99 |
2.250 |
-0.01005 |
15 |
0.99 |
2.950 |
-0.01005 |
16 |
0.99 |
3.700 |
-0.01005 |
17 |
0.99 |
6.070 |
-0.01005 |
18 |
0.99 |
6.650 |
-0.01005 |
19 |
0.99 |
7.050 |
-0.01005 |
20 |
0.99 |
7.370 |
-0.01005 |
21 |
1.09 |
0.180 |
0.08618 |
22 |
1.09 |
0.200 |
0.08618 |
23 |
1.09 |
0.240 |
0.08618 |
24 |
1.09 |
0.260 |
0.08618 |
25 |
1.09 |
0.320 |
0.08618 |
26 |
1.09 |
0.320 |
0.08618 |
27 |
1.09 |
0.420 |
0.08618 |
28 |
1.09 |
0.440 |
0.08618 |
29 |
1.09 |
0.880 |
0.08618 |
30 |
1.18 |
0.073 |
0.16551 |
31 |
1.18 |
0.098 |
0.16551 |
32 |
1.18 |
0.117 |
0.16551 |
33 |
1.18 |
0.135 |
0.16551 |
34 |
1.18 |
0.175 |
0.16551 |
35 |
1.18 |
0.262 |
0.16551 |
36 |
1.18 |
0.270 |
0.16551 |
37 |
1.18 |
0.350 |
0.16551 |
38 |
1.18 |
0.386 |
0.16551 |
39 |
1.18 |
0.456 |
0.16551 |
|
Figure 30.13: Listing of the Bearing Data
The following statements fit the regression model by maximum
likelihood using the Weibull distribution.
ods output modobstats = RESIDUAL;
proc reliability data=bearing;
distribution weibull;
model life = lload / covb
corrb
obstats
;
run;
proc print data=RESIDUAL;
run;
The PROC RELIABILITY statement invokes the procedure and identifies
BEARING as the input data set.
The DISTRIBUTION statement specifies the Weibull distribution
for model fitting. The MODEL statement specifies the regression
model, identifying LIFE as the variable that provides
the response values (the lifetimes) and LLOAD as the
independent variable (the log loads).
The MODEL statement option COVB requests the regression parameter
covariance matrix, and the CORRB option requests the correlation
matrix.
The option OBSTATS requests a table that
contains residuals, predicted values, and other statistics.
The ODS output statement creates a SAS data set named RESIDUAL that contains the
table created by the OBSTATS option.
Figure 30.14 shows the tabular output produced by the RELIABILITY procedure.
The "Weibull
Parameter Estimates" table contains parameter estimates, their
standard errors, and 95% confidence intervals. In this table,
INTERCEPT corresponds to ,
LLOAD corresponds to , and SHAPE corresponds to
the Weibull shape parameter.
Figure 30.15 shows a listing of the output data set RESIDUAL.
The RELIABILITY Procedure |
Model Information |
Input Data Set |
WORK.BEARING |
Analysis Variable |
life |
Distribution |
Weibull |
Parameter Information |
PRM1 |
Intercept |
PRM2 |
lload |
PRM3 |
EV Scale |
Summary of Fit |
Observations Used |
39 |
Uncensored Values |
39 |
Maximum Loglikelihood |
-51.77737 |
Weibull Parameter Estimates |
Parameter |
Estimate |
Standard Error |
Asymptotic Normal |
95% Confidence Limits |
Lower |
Upper |
Intercept |
0.8323 |
0.1410 |
0.5560 |
1.1086 |
lload |
-13.8529 |
1.2333 |
-16.2703 |
-11.4356 |
EV Scale |
0.8043 |
0.0999 |
0.6304 |
1.0260 |
Weibull Shape |
1.2434 |
0.1545 |
0.9746 |
1.5862 |
Estimated Covariance Matrix Weibull Parameters |
|
PRM1 |
PRM2 |
PRM3 |
PRM1 |
0.01987 |
-0.04374 |
-0.00492 |
PRM2 |
-0.04374 |
1.52113 |
0.01578 |
PRM3 |
-0.00492 |
0.01578 |
0.00999 |
Estimated Correlation Matrix Weibull Parameters |
|
PRM1 |
PRM2 |
PRM3 |
PRM1 |
1.0000 |
-0.2516 |
-0.3491 |
PRM2 |
-0.2516 |
1.0000 |
0.1281 |
PRM3 |
-0.3491 |
0.1281 |
1.0000 |
|
Figure 30.14: Analysis Results for the Bearing Data
Obs |
life |
lload |
XBETA |
SURV |
RESID |
SRESID |
ARESID |
1 |
1.67 |
-0.139262 |
2.7614742 |
0.9407681 |
-2.248651 |
-2.795921 |
-2.795921 |
2 |
2.2 |
-0.139262 |
2.7614742 |
0.9175782 |
-1.973017 |
-2.453205 |
-2.453205 |
3 |
2.51 |
-0.139262 |
2.7614742 |
0.9036277 |
-1.841191 |
-2.289296 |
-2.289296 |
4 |
3 |
-0.139262 |
2.7614742 |
0.8811799 |
-1.662862 |
-2.067565 |
-2.067565 |
5 |
3.9 |
-0.139262 |
2.7614742 |
0.8392186 |
-1.400498 |
-1.741347 |
-1.741347 |
6 |
4.7 |
-0.139262 |
2.7614742 |
0.8016738 |
-1.213912 |
-1.50935 |
-1.50935 |
7 |
7.53 |
-0.139262 |
2.7614742 |
0.6721971 |
-0.742579 |
-0.923306 |
-0.923306 |
8 |
14.7 |
-0.139262 |
2.7614742 |
0.4015113 |
-0.073627 |
-0.091546 |
-0.091546 |
9 |
27.76 |
-0.139262 |
2.7614742 |
0.1337746 |
0.562122 |
0.6989298 |
0.6989298 |
10 |
37.4 |
-0.139262 |
2.7614742 |
0.0542547 |
0.8601965 |
1.069549 |
1.069549 |
11 |
0.8 |
-0.01005 |
0.971511 |
0.7973909 |
-1.194655 |
-1.485407 |
-1.485407 |
12 |
1 |
-0.01005 |
0.971511 |
0.741702 |
-0.971511 |
-1.207955 |
-1.207955 |
13 |
1.37 |
-0.01005 |
0.971511 |
0.6427726 |
-0.6567 |
-0.816526 |
-0.816526 |
14 |
2.25 |
-0.01005 |
0.971511 |
0.4408692 |
-0.160581 |
-0.199663 |
-0.199663 |
15 |
2.95 |
-0.01005 |
0.971511 |
0.3175927 |
0.1102941 |
0.1371372 |
0.1371372 |
16 |
3.7 |
-0.01005 |
0.971511 |
0.2186832 |
0.3368218 |
0.4187966 |
0.4187966 |
17 |
6.07 |
-0.01005 |
0.971511 |
0.0600164 |
0.8318476 |
1.0343005 |
1.0343005 |
18 |
6.65 |
-0.01005 |
0.971511 |
0.0428027 |
0.9231058 |
1.147769 |
1.147769 |
19 |
7.05 |
-0.01005 |
0.971511 |
0.0337583 |
0.9815166 |
1.2203956 |
1.2203956 |
20 |
7.37 |
-0.01005 |
0.971511 |
0.0278531 |
1.0259067 |
1.2755892 |
1.2755892 |
21 |
0.18 |
0.0861777 |
-0.361531 |
0.8303684 |
-1.353268 |
-1.682623 |
-1.682623 |
22 |
0.2 |
0.0861777 |
-0.361531 |
0.809042 |
-1.247907 |
-1.55162 |
-1.55162 |
23 |
0.24 |
0.0861777 |
-0.361531 |
0.7665749 |
-1.065586 |
-1.324925 |
-1.324925 |
24 |
0.26 |
0.0861777 |
-0.361531 |
0.7455451 |
-0.985543 |
-1.225402 |
-1.225402 |
25 |
0.32 |
0.0861777 |
-0.361531 |
0.6837688 |
-0.777904 |
-0.967228 |
-0.967228 |
26 |
0.32 |
0.0861777 |
-0.361531 |
0.6837688 |
-0.777904 |
-0.967228 |
-0.967228 |
27 |
0.42 |
0.0861777 |
-0.361531 |
0.5868036 |
-0.50597 |
-0.629112 |
-0.629112 |
28 |
0.44 |
0.0861777 |
-0.361531 |
0.5684693 |
-0.45945 |
-0.57127 |
-0.57127 |
29 |
0.88 |
0.0861777 |
-0.361531 |
0.2625812 |
0.2336973 |
0.290574 |
0.290574 |
30 |
0.073 |
0.1655144 |
-1.460578 |
0.7887184 |
-1.156718 |
-1.438237 |
-1.438237 |
31 |
0.098 |
0.1655144 |
-1.460578 |
0.7101313 |
-0.86221 |
-1.072052 |
-1.072052 |
32 |
0.117 |
0.1655144 |
-1.460578 |
0.6526714 |
-0.685003 |
-0.851717 |
-0.851717 |
33 |
0.135 |
0.1655144 |
-1.460578 |
0.6006317 |
-0.541902 |
-0.673789 |
-0.673789 |
34 |
0.175 |
0.1655144 |
-1.460578 |
0.4946523 |
-0.282391 |
-0.351119 |
-0.351119 |
35 |
0.262 |
0.1655144 |
-1.460578 |
0.3126729 |
0.1211675 |
0.1506569 |
0.1506569 |
36 |
0.27 |
0.1655144 |
-1.460578 |
0.2991233 |
0.1512449 |
0.1880546 |
0.1880546 |
37 |
0.35 |
0.1655144 |
-1.460578 |
0.1889073 |
0.4107561 |
0.5107249 |
0.5107249 |
38 |
0.386 |
0.1655144 |
-1.460578 |
0.1522503 |
0.5086604 |
0.6324568 |
0.6324568 |
39 |
0.456 |
0.1655144 |
-1.460578 |
0.0987061 |
0.6753158 |
0.8396724 |
0.8396724 |
|
Figure 30.15: Listing of RESIDUAL
The value of the lifetime LIFE and the log load LLOAD are included in
this data set, as well as statistics computed from the fitted model.
The variable _XBETA_ is the value
of the linear predictor
for each observation. The variable _SURV_ contains the value of the
reliability function,
the variable _SRESID_ contains the standardized residual,
and the variable _ARESID_ contains a residual
adjusted for right-censored observations.
Since there are no censored
values in these data, _SRESID_ is equal to _ARESID_ for all the
bearings. See Table 30.21 and Table 30.22 for other
statistics that are available in the OBSTATS table and data set.
See the section
"Regression Model Observation-Wise Statistics"
for a description of the residuals and other statistics.
If the fitted regression model is adequate, the standardized residuals
have a standard extreme value distribution. You can check
the residuals by creating an extreme value probability plot
of the residuals using the RELIABILITY procedure and the RESIDUAL
data set.
The following statements create the plot in Figure 30.16.
symbol c=blue v=plus;
proc reliability data=residual;
distribution ev;
probplot sresid / cframe = ligr
ccensor = megr;
inset / cfill = ywh;
run;
Figure 30.16: Extreme Value Probability Plot for the Standardized Residuals
Although the estimated location is near zero and the estimated scale
is near one,
the plot reveals systematic curvature,
indicating that the Weibull regression model might be inadequate.
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.