Introduction to the OPTEX Procedure |
Constructing a Nonstandard Design
See OPTEXG1 in the SAS/QC Sample Library
|
This example shows how you can use the OPTEX procedure
to construct a design for a complicated experiment for which no standard
design is available.
A chemical company is designing a new reaction process. The engineers
have isolated the following five factors that might affect the total
yield:
Variable
|
Description
|
Range
|
RTEMP | Temperature of the reaction chamber | 150-350 degrees |
PRESS | Pressure of the reaction chamber | 10-30 psi |
TIME | Amount of time for the reaction | 3-5 minutes |
SOLV | Amount of solvent used | 20-25 % |
SOURCE | Source of raw materials | 1, 2, 3, 4, 5 |
While there are only two solvent levels of interest, the reaction
control factors (RTEMP, PRESS, and TIME) may be curvilinearly related
to the total yield and thus require three levels in the experiment.
The SOURCE factor is categorical with five levels.
Additionally, some combinations of the factors are known to be
problematic; simultaneously setting all three reaction control factors
to their lowest feasible levels will result in worthless sludge, while
setting them all to their highest levels can damage the reactor.
Standard experimental designs do not apply to this situation.
You can use the OPTEX procedure to generate a design for this
experiment. The first step in generating an optimal design is to
prepare a data set containing the candidate runs (that is, the
feasible factor level combinations). In many cases, this step
involves the most work. You can use a variety of SAS data manipulation
tools to set up the candidate data set. In this example, the candidate
runs are all possible combinations of the factor levels except those
with all three control factors at their low levels and at their high
levels, respectively.
The PLAN procedure (refer to the SAS/STAT User's Guide)
provides an easy way to create a
full factorial data set, which can then be subsetted using the DATA
step, as shown in the following statements:
proc plan ordered;
factors rtemp=3 press=3 time=3 solv=2 source=5/noprint;
output out=can
rtemp nvals=(150 to 350 by 100)
press nvals=( 10 to 30 by 10)
time nvals=( 3 to 5 )
solv nvals=( 20 to 25 by 5)
source nvals=( 1 to 5 );
data can; set can;
if (^((rtemp = 150) & (press = 10) & (time = 3)));
if (^((rtemp = 350) & (press = 30) & (time = 5)));
proc print data=can;
run;
A listing of the candidate data set CAN is shown in Figure 23.1.
Obs |
rtemp |
press |
time |
solv |
source |
1 |
150 |
10 |
4 |
20 |
1 |
2 |
150 |
10 |
4 |
20 |
2 |
3 |
150 |
10 |
4 |
20 |
3 |
4 |
150 |
10 |
4 |
20 |
4 |
5 |
150 |
10 |
4 |
20 |
5 |
6 |
150 |
10 |
4 |
25 |
1 |
7 |
150 |
10 |
4 |
25 |
2 |
8 |
150 |
10 |
4 |
25 |
3 |
9 |
150 |
10 |
4 |
25 |
4 |
10 |
150 |
10 |
4 |
25 |
5 |
11 |
150 |
10 |
5 |
20 |
1 |
12 |
150 |
10 |
5 |
20 |
2 |
13 |
150 |
10 |
5 |
20 |
3 |
14 |
150 |
10 |
5 |
20 |
4 |
15 |
150 |
10 |
5 |
20 |
5 |
16 |
150 |
10 |
5 |
25 |
1 |
17 |
150 |
10 |
5 |
25 |
2 |
18 |
150 |
10 |
5 |
25 |
3 |
19 |
150 |
10 |
5 |
25 |
4 |
20 |
150 |
10 |
5 |
25 |
5 |
21 |
150 |
20 |
3 |
20 |
1 |
22 |
150 |
20 |
3 |
20 |
2 |
23 |
150 |
20 |
3 |
20 |
3 |
24 |
150 |
20 |
3 |
20 |
4 |
25 |
150 |
20 |
3 |
20 |
5 |
26 |
150 |
20 |
3 |
25 |
1 |
27 |
150 |
20 |
3 |
25 |
2 |
28 |
150 |
20 |
3 |
25 |
3 |
29 |
150 |
20 |
3 |
25 |
4 |
30 |
150 |
20 |
3 |
25 |
5 |
31 |
150 |
20 |
4 |
20 |
1 |
32 |
150 |
20 |
4 |
20 |
2 |
33 |
150 |
20 |
4 |
20 |
3 |
34 |
150 |
20 |
4 |
20 |
4 |
35 |
150 |
20 |
4 |
20 |
5 |
36 |
150 |
20 |
4 |
25 |
1 |
37 |
150 |
20 |
4 |
25 |
2 |
38 |
150 |
20 |
4 |
25 |
3 |
39 |
150 |
20 |
4 |
25 |
4 |
40 |
150 |
20 |
4 |
25 |
5 |
41 |
150 |
20 |
5 |
20 |
1 |
42 |
150 |
20 |
5 |
20 |
2 |
43 |
150 |
20 |
5 |
20 |
3 |
44 |
150 |
20 |
5 |
20 |
4 |
45 |
150 |
20 |
5 |
20 |
5 |
46 |
150 |
20 |
5 |
25 |
1 |
47 |
150 |
20 |
5 |
25 |
2 |
48 |
150 |
20 |
5 |
25 |
3 |
49 |
150 |
20 |
5 |
25 |
4 |
50 |
150 |
20 |
5 |
25 |
5 |
51 |
150 |
30 |
3 |
20 |
1 |
52 |
150 |
30 |
3 |
20 |
2 |
53 |
150 |
30 |
3 |
20 |
3 |
54 |
150 |
30 |
3 |
20 |
4 |
55 |
150 |
30 |
3 |
20 |
5 |
56 |
150 |
30 |
3 |
25 |
1 |
57 |
150 |
30 |
3 |
25 |
2 |
58 |
150 |
30 |
3 |
25 |
3 |
59 |
150 |
30 |
3 |
25 |
4 |
60 |
150 |
30 |
3 |
25 |
5 |
61 |
150 |
30 |
4 |
20 |
1 |
62 |
150 |
30 |
4 |
20 |
2 |
63 |
150 |
30 |
4 |
20 |
3 |
64 |
150 |
30 |
4 |
20 |
4 |
65 |
150 |
30 |
4 |
20 |
5 |
66 |
150 |
30 |
4 |
25 |
1 |
67 |
150 |
30 |
4 |
25 |
2 |
68 |
150 |
30 |
4 |
25 |
3 |
69 |
150 |
30 |
4 |
25 |
4 |
70 |
150 |
30 |
4 |
25 |
5 |
71 |
150 |
30 |
5 |
20 |
1 |
72 |
150 |
30 |
5 |
20 |
2 |
73 |
150 |
30 |
5 |
20 |
3 |
74 |
150 |
30 |
5 |
20 |
4 |
75 |
150 |
30 |
5 |
20 |
5 |
76 |
150 |
30 |
5 |
25 |
1 |
77 |
150 |
30 |
5 |
25 |
2 |
78 |
150 |
30 |
5 |
25 |
3 |
79 |
150 |
30 |
5 |
25 |
4 |
80 |
150 |
30 |
5 |
25 |
5 |
81 |
250 |
10 |
3 |
20 |
1 |
82 |
250 |
10 |
3 |
20 |
2 |
83 |
250 |
10 |
3 |
20 |
3 |
84 |
250 |
10 |
3 |
20 |
4 |
85 |
250 |
10 |
3 |
20 |
5 |
86 |
250 |
10 |
3 |
25 |
1 |
87 |
250 |
10 |
3 |
25 |
2 |
88 |
250 |
10 |
3 |
25 |
3 |
89 |
250 |
10 |
3 |
25 |
4 |
90 |
250 |
10 |
3 |
25 |
5 |
91 |
250 |
10 |
4 |
20 |
1 |
92 |
250 |
10 |
4 |
20 |
2 |
93 |
250 |
10 |
4 |
20 |
3 |
94 |
250 |
10 |
4 |
20 |
4 |
95 |
250 |
10 |
4 |
20 |
5 |
96 |
250 |
10 |
4 |
25 |
1 |
97 |
250 |
10 |
4 |
25 |
2 |
98 |
250 |
10 |
4 |
25 |
3 |
99 |
250 |
10 |
4 |
25 |
4 |
100 |
250 |
10 |
4 |
25 |
5 |
101 |
250 |
10 |
5 |
20 |
1 |
102 |
250 |
10 |
5 |
20 |
2 |
103 |
250 |
10 |
5 |
20 |
3 |
104 |
250 |
10 |
5 |
20 |
4 |
105 |
250 |
10 |
5 |
20 |
5 |
106 |
250 |
10 |
5 |
25 |
1 |
107 |
250 |
10 |
5 |
25 |
2 |
108 |
250 |
10 |
5 |
25 |
3 |
109 |
250 |
10 |
5 |
25 |
4 |
110 |
250 |
10 |
5 |
25 |
5 |
111 |
250 |
20 |
3 |
20 |
1 |
112 |
250 |
20 |
3 |
20 |
2 |
113 |
250 |
20 |
3 |
20 |
3 |
114 |
250 |
20 |
3 |
20 |
4 |
115 |
250 |
20 |
3 |
20 |
5 |
116 |
250 |
20 |
3 |
25 |
1 |
117 |
250 |
20 |
3 |
25 |
2 |
118 |
250 |
20 |
3 |
25 |
3 |
119 |
250 |
20 |
3 |
25 |
4 |
120 |
250 |
20 |
3 |
25 |
5 |
121 |
250 |
20 |
4 |
20 |
1 |
122 |
250 |
20 |
4 |
20 |
2 |
123 |
250 |
20 |
4 |
20 |
3 |
124 |
250 |
20 |
4 |
20 |
4 |
125 |
250 |
20 |
4 |
20 |
5 |
126 |
250 |
20 |
4 |
25 |
1 |
127 |
250 |
20 |
4 |
25 |
2 |
128 |
250 |
20 |
4 |
25 |
3 |
129 |
250 |
20 |
4 |
25 |
4 |
130 |
250 |
20 |
4 |
25 |
5 |
131 |
250 |
20 |
5 |
20 |
1 |
132 |
250 |
20 |
5 |
20 |
2 |
133 |
250 |
20 |
5 |
20 |
3 |
134 |
250 |
20 |
5 |
20 |
4 |
135 |
250 |
20 |
5 |
20 |
5 |
136 |
250 |
20 |
5 |
25 |
1 |
137 |
250 |
20 |
5 |
25 |
2 |
138 |
250 |
20 |
5 |
25 |
3 |
139 |
250 |
20 |
5 |
25 |
4 |
140 |
250 |
20 |
5 |
25 |
5 |
141 |
250 |
30 |
3 |
20 |
1 |
142 |
250 |
30 |
3 |
20 |
2 |
143 |
250 |
30 |
3 |
20 |
3 |
144 |
250 |
30 |
3 |
20 |
4 |
145 |
250 |
30 |
3 |
20 |
5 |
146 |
250 |
30 |
3 |
25 |
1 |
147 |
250 |
30 |
3 |
25 |
2 |
148 |
250 |
30 |
3 |
25 |
3 |
149 |
250 |
30 |
3 |
25 |
4 |
150 |
250 |
30 |
3 |
25 |
5 |
151 |
250 |
30 |
4 |
20 |
1 |
152 |
250 |
30 |
4 |
20 |
2 |
153 |
250 |
30 |
4 |
20 |
3 |
154 |
250 |
30 |
4 |
20 |
4 |
155 |
250 |
30 |
4 |
20 |
5 |
156 |
250 |
30 |
4 |
25 |
1 |
157 |
250 |
30 |
4 |
25 |
2 |
158 |
250 |
30 |
4 |
25 |
3 |
159 |
250 |
30 |
4 |
25 |
4 |
160 |
250 |
30 |
4 |
25 |
5 |
161 |
250 |
30 |
5 |
20 |
1 |
162 |
250 |
30 |
5 |
20 |
2 |
163 |
250 |
30 |
5 |
20 |
3 |
164 |
250 |
30 |
5 |
20 |
4 |
165 |
250 |
30 |
5 |
20 |
5 |
166 |
250 |
30 |
5 |
25 |
1 |
167 |
250 |
30 |
5 |
25 |
2 |
168 |
250 |
30 |
5 |
25 |
3 |
169 |
250 |
30 |
5 |
25 |
4 |
170 |
250 |
30 |
5 |
25 |
5 |
171 |
350 |
10 |
3 |
20 |
1 |
172 |
350 |
10 |
3 |
20 |
2 |
173 |
350 |
10 |
3 |
20 |
3 |
174 |
350 |
10 |
3 |
20 |
4 |
175 |
350 |
10 |
3 |
20 |
5 |
176 |
350 |
10 |
3 |
25 |
1 |
177 |
350 |
10 |
3 |
25 |
2 |
178 |
350 |
10 |
3 |
25 |
3 |
179 |
350 |
10 |
3 |
25 |
4 |
180 |
350 |
10 |
3 |
25 |
5 |
181 |
350 |
10 |
4 |
20 |
1 |
182 |
350 |
10 |
4 |
20 |
2 |
183 |
350 |
10 |
4 |
20 |
3 |
184 |
350 |
10 |
4 |
20 |
4 |
185 |
350 |
10 |
4 |
20 |
5 |
186 |
350 |
10 |
4 |
25 |
1 |
187 |
350 |
10 |
4 |
25 |
2 |
188 |
350 |
10 |
4 |
25 |
3 |
189 |
350 |
10 |
4 |
25 |
4 |
190 |
350 |
10 |
4 |
25 |
5 |
191 |
350 |
10 |
5 |
20 |
1 |
192 |
350 |
10 |
5 |
20 |
2 |
193 |
350 |
10 |
5 |
20 |
3 |
194 |
350 |
10 |
5 |
20 |
4 |
195 |
350 |
10 |
5 |
20 |
5 |
196 |
350 |
10 |
5 |
25 |
1 |
197 |
350 |
10 |
5 |
25 |
2 |
198 |
350 |
10 |
5 |
25 |
3 |
199 |
350 |
10 |
5 |
25 |
4 |
200 |
350 |
10 |
5 |
25 |
5 |
201 |
350 |
20 |
3 |
20 |
1 |
202 |
350 |
20 |
3 |
20 |
2 |
203 |
350 |
20 |
3 |
20 |
3 |
204 |
350 |
20 |
3 |
20 |
4 |
205 |
350 |
20 |
3 |
20 |
5 |
206 |
350 |
20 |
3 |
25 |
1 |
207 |
350 |
20 |
3 |
25 |
2 |
208 |
350 |
20 |
3 |
25 |
3 |
209 |
350 |
20 |
3 |
25 |
4 |
210 |
350 |
20 |
3 |
25 |
5 |
211 |
350 |
20 |
4 |
20 |
1 |
212 |
350 |
20 |
4 |
20 |
2 |
213 |
350 |
20 |
4 |
20 |
3 |
214 |
350 |
20 |
4 |
20 |
4 |
215 |
350 |
20 |
4 |
20 |
5 |
216 |
350 |
20 |
4 |
25 |
1 |
217 |
350 |
20 |
4 |
25 |
2 |
218 |
350 |
20 |
4 |
25 |
3 |
219 |
350 |
20 |
4 |
25 |
4 |
220 |
350 |
20 |
4 |
25 |
5 |
221 |
350 |
20 |
5 |
20 |
1 |
222 |
350 |
20 |
5 |
20 |
2 |
223 |
350 |
20 |
5 |
20 |
3 |
224 |
350 |
20 |
5 |
20 |
4 |
225 |
350 |
20 |
5 |
20 |
5 |
226 |
350 |
20 |
5 |
25 |
1 |
227 |
350 |
20 |
5 |
25 |
2 |
228 |
350 |
20 |
5 |
25 |
3 |
229 |
350 |
20 |
5 |
25 |
4 |
230 |
350 |
20 |
5 |
25 |
5 |
231 |
350 |
30 |
3 |
20 |
1 |
232 |
350 |
30 |
3 |
20 |
2 |
233 |
350 |
30 |
3 |
20 |
3 |
234 |
350 |
30 |
3 |
20 |
4 |
235 |
350 |
30 |
3 |
20 |
5 |
236 |
350 |
30 |
3 |
25 |
1 |
237 |
350 |
30 |
3 |
25 |
2 |
238 |
350 |
30 |
3 |
25 |
3 |
239 |
350 |
30 |
3 |
25 |
4 |
240 |
350 |
30 |
3 |
25 |
5 |
241 |
350 |
30 |
4 |
20 |
1 |
242 |
350 |
30 |
4 |
20 |
2 |
243 |
350 |
30 |
4 |
20 |
3 |
244 |
350 |
30 |
4 |
20 |
4 |
245 |
350 |
30 |
4 |
20 |
5 |
246 |
350 |
30 |
4 |
25 |
1 |
247 |
350 |
30 |
4 |
25 |
2 |
248 |
350 |
30 |
4 |
25 |
3 |
249 |
350 |
30 |
4 |
25 |
4 |
250 |
350 |
30 |
4 |
25 |
5 |
|
Figure 23.1: Candidate Set of Runs for Chemical Reaction Design
The next step is to invoke the OPTEX procedure, specifying the candidate
data set as the input data set. You must also provide a model for the
experiment, using the MODEL statement, which uses the linear modeling
syntax of the GLM procedure (refer to the SAS/STAT User's Guide).
Since SOURCE is a classification
factor, you need to specify it in a CLASS statement. To detect possible
cross-product effects in the other factors, as well as the quadratic
effects of the three reaction control factors, you can use a modified
response surface model, as shown in the following statements:
proc optex data=can;
class source;
model source solv|rtemp|press|time@@2
rtemp*rtemp press*press time*time;
run;
Note that the MODEL statement does not involve a response variable (unlike
the MODEL statement in the GLM procedure).
The default number of runs for a design is assumed by the OPTEX procedure
to be 10 plus the number of parameters (a total of 10 + 18 = 28 in this
case.) Thus, the procedure searches for 28 runs among the candidates in
CAN that allow D-optimal estimation of the effects in the model. (See
"Optimality Criteria" for a precise definition
of D-optimality.) Randomness is built into the search algorithm to
overcome the problem of local optima, so by default the OPTEX procedure
takes 10 random "tries" to find the best design. The output,
shown in Figure 23.2, lists efficiency factors for the 10 designs
found. These designs are all very close in terms of their D-efficiency.
Design Number |
D-Efficiency |
A-Efficiency |
G-Efficiency |
Average Prediction Standard Error |
1 |
43.6131 |
22.9676 |
77.5794 |
0.8529 |
2 |
43.5647 |
24.8096 |
77.5054 |
0.8495 |
3 |
43.3119 |
24.1106 |
77.8534 |
0.8494 |
4 |
43.0918 |
23.6364 |
78.4918 |
0.8535 |
5 |
42.7266 |
23.5430 |
75.1467 |
0.8608 |
6 |
42.6481 |
22.8901 |
75.6073 |
0.8669 |
7 |
42.5349 |
22.3007 |
76.1047 |
0.8683 |
8 |
42.4867 |
20.7428 |
77.2003 |
0.8689 |
9 |
42.4342 |
24.1507 |
75.5005 |
0.8562 |
10 |
42.1579 |
20.8750 |
71.0905 |
0.8839 |
|
Figure 23.2: Efficiency Factors for Chemical Reaction Design
The final step is to save the best design in a data set. You can do
this interactively by submitting the OUTPUT
statement immediately after the preceding statements. Then use the
PRINT procedure to list the design. The design is
listed in Figure 23.3.
output out=reactor;
proc print data=reactor;
run;
Obs |
solv |
rtemp |
press |
time |
source |
1 |
20 |
150 |
10 |
4 |
5 |
2 |
20 |
150 |
30 |
3 |
5 |
3 |
20 |
350 |
20 |
5 |
5 |
4 |
25 |
250 |
20 |
4 |
5 |
5 |
25 |
350 |
30 |
3 |
5 |
6 |
20 |
150 |
20 |
3 |
4 |
7 |
20 |
250 |
30 |
5 |
4 |
8 |
20 |
350 |
10 |
3 |
4 |
9 |
25 |
150 |
10 |
5 |
4 |
10 |
25 |
150 |
30 |
3 |
4 |
11 |
25 |
350 |
20 |
4 |
4 |
12 |
20 |
150 |
20 |
5 |
3 |
13 |
20 |
150 |
30 |
4 |
3 |
14 |
20 |
350 |
30 |
3 |
3 |
15 |
25 |
150 |
20 |
3 |
3 |
16 |
25 |
250 |
10 |
3 |
3 |
17 |
25 |
250 |
30 |
5 |
3 |
18 |
25 |
350 |
10 |
5 |
3 |
19 |
20 |
250 |
10 |
5 |
2 |
20 |
20 |
350 |
30 |
4 |
2 |
21 |
25 |
150 |
30 |
5 |
2 |
22 |
25 |
350 |
10 |
3 |
2 |
23 |
25 |
350 |
20 |
5 |
2 |
24 |
20 |
150 |
30 |
5 |
1 |
25 |
20 |
250 |
20 |
3 |
1 |
26 |
20 |
350 |
10 |
4 |
1 |
27 |
25 |
150 |
10 |
4 |
1 |
28 |
25 |
350 |
30 |
3 |
1 |
|
Figure 23.3: Optimal Design for Chemical Reaction Process Experiment
The OPTEX procedure provides options with which you can customize many
aspects of the design optimization process. Suppose the budget for this
experiment can only accommodate 25 runs. You can use the N= option
in the GENERATE statement to request a design with this number of
runs.
proc optex data=can;
class source;
model source solv|rtemp|press|time@@2
rtemp*rtemp press*press time*time;
generate n=25;
run;
If there are factor combinations that you want to include in the final
design, you can use the OPTEX procedure to augment those
combinations optimally. For example, suppose you want to force four
specific factor combinations to be in the design. If these combinations
are saved in a data set, you can force them into the design by specifying
the data set with the AUGMENT= option in the GENERATE statement. This
technique is demonstrated in the following statements:
data preset;
input solv rtemp press time source;
datalines;
20 350 10 5 4
20 150 10 4 3
25 150 30 3 3
25 250 10 5 3
;
proc optex data=can;
class source;
model source solv|rtemp|press|time@@2
rtemp*rtemp press*press time*time;
generate n=25 augment=preset;
output out=reactor2;
run;
The final design is listed in Figure 23.4.
Note that the points in the AUGMENT= data set appear as observations
7, 11, 15, and 16.
You can also specify a variety of optimization methods with the
GENERATE statement. The default method is relatively fast; while
other methods may find better designs, they take longer to run and
the improvement is usually only marginal. The method that generally
finds the best designs is the modified Fedorov procedure described by
Cook and Nachtsheim (1980). The following statements show how to request
this method:
proc optex data=can;
class source;
model source solv|rtemp|press|time@@2
rtemp*rtemp press*press time*time;
generate n=25 method=m_fedorov;
run;
Obs |
solv |
rtemp |
press |
time |
source |
1 |
20 |
150 |
30 |
3 |
5 |
2 |
20 |
350 |
20 |
5 |
5 |
3 |
25 |
150 |
10 |
4 |
5 |
4 |
25 |
250 |
20 |
4 |
5 |
5 |
25 |
350 |
30 |
3 |
5 |
6 |
20 |
150 |
20 |
5 |
4 |
7 |
20 |
250 |
10 |
3 |
4 |
8 |
25 |
150 |
10 |
5 |
4 |
9 |
25 |
150 |
30 |
3 |
4 |
10 |
25 |
350 |
30 |
4 |
4 |
11 |
20 |
150 |
20 |
3 |
3 |
12 |
20 |
250 |
10 |
5 |
3 |
13 |
20 |
350 |
30 |
4 |
3 |
14 |
25 |
150 |
30 |
5 |
3 |
15 |
25 |
350 |
10 |
3 |
3 |
16 |
20 |
150 |
10 |
4 |
2 |
17 |
20 |
250 |
30 |
5 |
2 |
18 |
20 |
350 |
10 |
3 |
2 |
19 |
25 |
250 |
20 |
4 |
2 |
20 |
25 |
350 |
10 |
5 |
2 |
21 |
20 |
150 |
30 |
5 |
1 |
22 |
20 |
350 |
10 |
4 |
1 |
23 |
20 |
350 |
30 |
3 |
1 |
24 |
25 |
150 |
20 |
3 |
1 |
25 |
25 |
250 |
30 |
5 |
1 |
|
Figure 23.4: Augmented Design for Chemical Reaction Process Experiment
The efficiencies for the resulting designs are shown in Figure 23.5.
Design Number |
D-Efficiency |
A-Efficiency |
G-Efficiency |
Average Prediction Standard Error |
1 |
43.2463 |
21.5586 |
76.0488 |
0.9174 |
2 |
43.1226 |
21.7105 |
73.4776 |
0.9171 |
3 |
43.1226 |
21.7105 |
73.4776 |
0.9171 |
4 |
43.0155 |
24.7451 |
73.7483 |
0.9091 |
5 |
42.9533 |
24.6489 |
75.3329 |
0.8977 |
6 |
42.8604 |
23.0747 |
72.6984 |
0.9114 |
7 |
42.7463 |
24.8328 |
78.7114 |
0.8951 |
8 |
42.6978 |
22.1083 |
74.1844 |
0.9219 |
9 |
42.6714 |
21.6200 |
74.9443 |
0.9255 |
10 |
42.4603 |
21.6074 |
74.4040 |
0.9186 |
|
Figure 23.5: Efficiency Factors for the Modified Fedorov Search
In this case, the modified Fedorov procedure takes three to four times longer
than the default method,
and D-efficiency only improves by about 0.5%. On the other hand,
the longer search method may take only a few seconds on a reasonably
fast computer.
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.