![]() Chapter Contents |
![]() Previous |
![]() Next |
MACHART Statement |
Here denotes the gamma function, and
denotes the i th subgroup mean. A subgroup
standard deviation si is included in the calculation only
if
. If the observations are normally distributed,
then the expected value of si is
.Thus,
is the unweighted average of N unbiased
estimates of
. This method is described in the
ASTM Manual on Presentation of Data and Control Chart Analysis
(1976).
A subgroup standard deviation si is included in
the calculation only if , and N is the number
of subgroups for which
.The MVLUE assigns greater weight to estimates of
from subgroups with larger sample sizes, and it
is intended for situations where the subgroup sample sizes vary.
If the subgroup sample sizes are constant, the MVLUE reduces
to the default estimate.
The weights are the degrees of
freedom ni-1. A subgroup standard deviation si is
included in the calculation only if ,and N is the number of subgroups for which
.
If the unknown standard deviation is constant across
subgroups, the root-mean-square estimate is more efficient than the
minimum variance linear unbiased estimate. However,
in process control applications it is generally not assumed that
is constant, and if
varies across subgroups, the root-mean-square estimate tends
to be more inflated than the MVLUE.
where N is the number of observations, and x1,x2, ... ,xN are the individual measurements. This formula is given by Wetherill (1977), who states that the estimate of the variance is biased if the measurements are autocorrelated.
![]() Chapter Contents |
![]() Previous |
![]() Next |
![]() Top |
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.