Chapter Contents |
Previous |
Next |
Category: | Probability |
Alias: | PMF |
Syntax |
PDF ('dist',quantile,parm-1, . . . ,parm-k) |
Distribution | Argument |
---|---|
Bernoulli |
'BERNOULLI' |
Beta |
'BETA' |
Binomial |
'BINOMIAL' |
Cauchy |
'CAUCHY' |
Chi-squared |
'CHISQUARED' |
Exponential |
'EXPONENTIAL' |
F |
'F' |
Gamma |
'GAMMA' |
Geometric |
'GEOMETRIC' |
Hypergeometric |
'HYPERGEOMETRIC' |
Laplace |
'LAPLACE' |
Logistic |
'LOGISTIC' |
Lognormal |
'LOGNORMAL' |
Negative binomial |
'NEGBINOMIAL' |
Normal |
'NORMAL'|'GAUSS' |
Pareto |
'PARETO' |
Poisson |
'POISSON' |
T |
'T' |
Uniform |
'UNIFORM' |
Wald (inverse Gaussian) |
'WALD'|'IGAUSS' |
Weibull |
'WEIBULL' |
Note: Except for T and F, any distribution can be minimally identified by its first four
characters.
Details |
Syntax |
PDF('BERNOULLI',x,p) |
Range: | 0 p 1 |
The PDF function for the Bernoulli distribution returns the probability density function of a Bernoulli distribution, with probability of success equal to p, which is evaluated at the value x. The equation follows:
Note: There are no location or scale parameters for this distribution.
Syntax |
PDF('BETA',x,a,b<,l,r>) |
where
Range: | a > 0 |
Range: | b > 0 |
Range: | r > l |
The PDF function for the beta distribution returns the probability density function of a beta distribution, with shape parameters a and b, which is evaluated at the value x. The equation follows:
Note: The quantity
is forced to be
. The default values for l and r
are 0 and 1, respectively.
Syntax |
PDF('BINOMIAL',m,p,n) |
where
Range: | 0 p 1 |
Range: | n > 0 |
The PDF function for the binomial distribution returns the probability density function of a binomial distribution, with parameters p and n, which is evaluated at the value m. The equation follows:
Note: There are no location or scale parameters for the binomial distribution.
Syntax |
PDF('CAUCHY',x<,,>) |
Range: | > 0 |
The PDF function for the Cauchy distribution returns the probability density function of a Cauchy distribution, with location parameter and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default values for and are
0 and 1, respectively.
Syntax |
PDF('CHISQUARED',x,df <,nc>) |
Range: | df > 0 |
Range: | nc 0 |
The PDF function for the chi-squared distribution returns the probability density function of a chi-squared distribution, with df degrees of freedom and noncentrality parameter nc, which is evaluated at the value x. This function accepts noninteger degrees of freedom. If nc is omitted or equal to zero, the value returned is from the central chi-squared distribution. The following equation describes the PDF function of the chi-squared distribution,
where pc(.,.) denotes the density from the central chi-squared distribution:
and where pg(y,b) is the density from the Gamma distribution, which is given by
Syntax |
PDF('EXPONENTIAL',x <,>) |
Range: | > 0 |
The PDF function for the exponential distribution returns the probability density function of an exponential distribution, with scale parameter , which is evaluated at the value x. The equation follows:
Note: The default value for is 1.
Syntax |
PDF('F',x,ndf,ddf<,nc>) |
Range: | ndf > 0 |
Range: | ddf > 0 |
Range: | nc 0 |
The PDF function for the F distribution returns the probability density function of an F distribution, with ndf numerator degrees of freedom, ddf denominator degrees of freedom, and noncentrality parameter nc, which is evaluated at the value x. This function accepts noninteger degrees of freedom for ndf and ddf. If nc is omitted or equal to zero, the value returned is from a central F distribution. The following equation describes the PDF function of the F distribution,
where pf(f,u1,u2) is the density from the central F distribution with
and where pB(x,a,b) is the density from the standard beta distribution.
Note: There are no location scale parameters
for the F distribution.
Syntax |
PDF('GAMMA',x,a<,>) |
Range: | a > 0 |
Range: | > 0 |
The PDF function for the gamma distribution returns the probability density function of a gamma distribution, with shape parameter a and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default value for
is 1.
Syntax |
PDF('GEOMETRIC',m,p) |
Range: | m 0 |
Range: | 0 p 1 |
The PDF function for the geometric distribution returns the probability density function of a geometric distribution, with parameter p, which is evaluated at the value m. The equation follows:
Note: There are no location or scale parameters for this distribution.
Syntax |
PDF('HYPER',x,m,k,n<,r>) |
Range: | m 1 |
Range: | 0 k m |
Range: | 0 n m |
Range: | r > 0 |
The PDF function for the hypergeometric distribution returns the probability density function of an extended hypergeometric distribution, with population size m, number of items k, sample size n, and odds ratio r, which is evaluated at the value x. If r is omitted or equal to 1, the value returned is from the usual hypergeometric distribution. The equation follows:
Syntax |
PDF('LAPLACE',x<,,>) |
Range: | > 0 |
The PDF function for the Laplace distribution returns the probability density function of the Laplace distribution, with location parameter and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default values for and
are 0 and 1, respectively.
Syntax |
PDF('LOGISTIC',x<,,>) |
Range: | > 0 |
The PDF function for the logistic distribution returns the probability density function of a logistic distribution, with a location parameter and a scale parameter , which is evaluated at the value x. The equation follows:
Note: The default values for and
are 0 and 1, respectively.
Syntax |
PDF('LOGNORMAL',x<,,>) |
Range: | > 0 |
The PDF function for the lognormal distribution returns the probability density function of a lognormal distribution, with location parameter and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default values for and are
0 and 1, respectively.
Syntax |
PDF('NEGBINOMIAL',m,p,n) |
where
Range: | m 0 |
Range: | 0 p 1 |
Range: | n 1 |
The PDF function for the negative binomial distribution returns the probability density function of a negative binomial distribution, with probability of success p and number of successes n, which is evaluated at the value m. The equation follows:
Note: There are no location or scale parameters for the negative binomial distribution.
Syntax |
PDF('NORMAL',x<,,>) |
Range: | > 0 |
The PDF function for the normal distribution returns the probability density function of a normal distribution, with location parameter and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default values for and
are 0 and 1, respectively.
Syntax |
PDF('PARETO',x,a<,k>) |
Range: | a > 0 |
Range: | k > 0 |
The PDF function for the Pareto distribution returns the probability density function of a Pareto distribution, with shape parameter a and scale parameter k, which is evaluated at the value x. The equation follows:
Note: The default value for k is 1.
Syntax |
PDF('POISSON',n,m) |
Range: | m > 0 |
The PDF function for the Poisson distribution returns the probability density function of a Poisson distribution, with mean m, which is evaluated at the value n. The equation follows:
Note: There are no location or scale parameters for the Poisson distribution.
Syntax |
PDF('T',t,df<,nc>) |
range: | df > 0 |
The PDF function for the T distribution returns the probability density function of a T distribution, with degrees of freedom df and noncentrality parameter nc, which is evaluated at the value x. This function accepts noninteger degrees of freedom. If nc is omitted or equal to zero, the value returned is from the central T distribution. The equation follows:
Note: There are no location or scale parameters for the T distribution.
Syntax |
PDF('UNIFORM',x<,l,r>) |
Range: | r > l |
The PDF function for the uniform distribution returns the probability density function of a uniform distribution, with left location parameter l and right location parameter r, which is evaluated at the value x. The equation follows:
Note: The default values for l and r are 0 and 1, respectively.
Syntax |
PDF('WALD',x,d) |
PDF('IGAUSS',x,d) |
Range: | d > 0 |
The PDF function for the Wald distribution returns the probability density function of a Wald distribution, with shape parameter d, which is evaluated at the value x. The equation follows:
Note: There are no location or scale parameters for the Wald distribution.
Syntax |
PDF('WEIBULL',x,a<,>) |
Range: | a > 0 |
Range: | > 0 |
The PDF function for the Weibull distribution returns the probability density function of a Weibull distribution, with shape parameter a and scale parameter , which is evaluated at the value x. The equation follows:
Note: The default value for is 1.
Examples |
SAS Statements | Results |
---|---|
y=pdf('BERN',0,.25); |
0.75 |
y=pdf('BERN',1,.25); |
0.25 |
y=pdf('BETA',0.2,3,4); |
1.2288 |
y=pdf('BINOM',4,.5,10); |
0.20508 |
y=pdf('CAUCHY',2); |
0.063662 |
y=pdf('CHISQ',11.264,11); |
0.081686 |
y=pdf('EXPO',1); |
0.36788 |
y=pdf('F',3.32,2,3); |
0.054027 |
y=pdf('GAMMA',1,3); |
0.18394 |
y=pdf('HYPER',2,200,50,10); |
0.28685 |
y=pdf('LAPLACE',1); |
0.18394 |
y=pdf('LOGISTIC',1); |
0.19661 |
y=pdf('LOGNORMAL',1); |
0.39894 |
y=pdf('NEGB',1,.5,2); |
0.25 |
y=pdf('NORMAL',1.96); |
0.058441 |
y=pdf('PARETO',1,1); |
1 |
y=pdf('POISSON',2,1); |
0.18394 |
y=pdf('T',.9,5); |
0.24194 |
y=pdf('UNIFORM',0.25); |
1 |
y=pdf('WALD',1,2); |
0.56419 |
y=pdf('WEIBULL',1,2); |
0.73576 |
Chapter Contents |
Previous |
Next |
Top of Page |
Copyright 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.