Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Time Series Analysis and Control Examples

Example 10.4: Diffuse Kalman Filtering

The nonstationary SSM is simulated to analyze the diffuse Kalman filter call KALDFF. The transition equation is generated using the following formula:

[ z_{1t} \ 
 z_{2t} 
 ] =
[ 1.5 & -0.5 \ 
 1.0 & 0.0 
 ]
[ z_{1t-1} \ 
 z_{2t-1} 
 ] +
[ \eta_{1t} \ 
 0 
 ]
where \eta_{1t} \sim N(0,1). The transition equation is nonstationary since the transition matrix F has one unit root.
   proc iml;
      z_1 = 0; z_2 = 0;
      do i = 1 to 30;
         z = 1.5*z_1 - .5*z_2 + rannor(1234567);
         z_2 = z_1;
         z_1 = z;
         x =  z + .8*rannor(1234578);
         if ( i > 10 ) then y = y // x;
      end;
The KALDFF and KALCVF calls produce one-step prediction, and the result shows that two predictions coincide after the fifth observation (Output 10.4.1).
      t = nrow(y);
      h = { 1 0 };
      f = { 1.5 -.5, 1 0 };
      rt = .64;
      vt = diag({1 0});
      ny = nrow(h);
      nz = ncol(h);
      nb = nz;
      nd = nz;
      a  = j(nz,1,0);
      b  = j(ny,1,0);
      int = j(ny+nz,nb,0);
      coef = f // h;
      var = ( vt || j(nz,ny,0) ) //
            ( j(ny,nz,0) || rt );
      intd = j(nz+nb,1,0);
      coefd = i(nz) // j(nb,nd,0);
      at = j(t*nz,nd+1,0);
      mt = j(t*nz,nz,0);
      qt = j(t*(nd+1),nd+1,0);
      n0 = -1;
      call kaldff(kaldff_p,dvpred,initial,s2,y,0,int,
                  coef,var,intd,coefd,n0,at,mt,qt);
      call kalcvf(kalcvf_p,vpred,filt,vfilt,y,0,a,f,b,h,var);
      print kalcvf_p kaldff_p;

Output 10.4.1: Diffuse Kalman Filtering

Diffuse Kalman Filtering

KALCVF_P   KALDFF_P  
0 0 0 0
1.441911 0.961274 1.1214871 0.9612746
-0.882128 -0.267663 -0.882138 -0.267667
-0.723156 -0.527704 -0.723158 -0.527706
1.2964969 0.871659 1.2964968 0.8716585
-0.035692 0.1379633 -0.035692 0.1379633
-2.698135 -1.967344 -2.698135 -1.967344
-5.010039 -4.158022 -5.010039 -4.158022
-9.048134 -7.719107 -9.048134 -7.719107
-8.993153 -8.508513 -8.993153 -8.508513
-11.16619 -10.44119 -11.16619 -10.44119
-10.42932 -10.34166 -10.42932 -10.34166
-8.331091 -8.822777 -8.331091 -8.822777
-9.578258 -9.450848 -9.578258 -9.450848
-6.526855 -7.241927 -6.526855 -7.241927
-5.218651 -5.813854 -5.218651 -5.813854
-5.01855 -5.291777 -5.01855 -5.291777
-6.5699 -6.284522 -6.5699 -6.284522
-4.613301 -4.995434 -4.613301 -4.995434
-5.057926 -5.09007 -5.057926 -5.09007


The likelihood function for the diffuse Kalman filter under the finite initial covariance matrix \Sigma_\delta is written

\lambda(y) = -\frac{1}2[y^\char93  \log(\hat{\sigma}^2)
 + \sum_{t=1}^T \log(|{D}_t|)]
where y(#) is the dimension of the matrix (y'1, ... , y'T)'. The likelihood function for the diffuse Kalman filter under the diffuse initial covariance matrix (\Sigma_\delta arrow \infty) is computed as \lambda(y) - \frac{1}2\log(|{S}|), where the S matrix is the upper N_\delta x N_\delta matrix of Qt. See the section "KALDFF Call" for more details on matrix notation. Output 10.4.2 displays the log likelihood and the diffuse log likelihood.
      d = 0;
      do i = 1 to t;
         dt = h*mt[(i-1)*nz+1:i*nz,]*h` + rt;
         d = d + log(det(dt));
      end;
      s = qt[(t-1)*(nd+1)+1:t*(nd+1)-1,1:nd];
      log_l = -(t*log(s2) + d)/2;
      dff_logl = log_l - log(det(s))/2;
      print log_l dff_logl;

Output 10.4.2: Diffuse Likelihood Function

  LIKL
Log L -11.42547

  LIKL_DFF
Diffuse Log L -9.457596


Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.