Example 7.2: Seasonal Model for the Airline Series
The airline passenger data, given as Series G in Box and Jenkins (1976),
has been used in time series analysis literature as an example of
a nonstationary seasonal time series.
This example uses PROC ARIMA to fit the "airline model,"
ARIMA(0,1,1)×(0,1,1)12, to Box and Jenkins' Series G.
The following statements read the data and log transform the series.
The PROC GPLOT step plots the series, as shown in Output 7.2.1.
title1 'International Airline Passengers';
title2 '(Box and Jenkins Series-G)';
data seriesg;
input x @@;
xlog = log( x );
date = intnx( 'month', '31dec1948'd, _n_ );
format date monyy.;
datalines;
112 118 132 129 121 135 148 148 136 119 104 118
115 126 141 135 125 149 170 170 158 133 114 140
145 150 178 163 172 178 199 199 184 162 146 166
171 180 193 181 183 218 230 242 209 191 172 194
196 196 236 235 229 243 264 272 237 211 180 201
204 188 235 227 234 264 302 293 259 229 203 229
242 233 267 269 270 315 364 347 312 274 237 278
284 277 317 313 318 374 413 405 355 306 271 306
315 301 356 348 355 422 465 467 404 347 305 336
340 318 362 348 363 435 491 505 404 359 310 337
360 342 406 396 420 472 548 559 463 407 362 405
417 391 419 461 472 535 622 606 508 461 390 432
;
symbol1 i=join v=dot;
proc gplot data=seriesg;
plot x * date = 1 / haxis= '1jan49'd to '1jan61'd by year;
run;
Output 7.2.1: Plot of Data
The following PROC ARIMA step fits an ARIMA(0,1,1)×(0,1,1)12 model
without a mean term
to the logarithms of the airline passengers series.
The model is forecast, and the results stored in the data set B.
proc arima data=seriesg;
identify var=xlog(1,12) nlag=15;
run;
estimate q=(1)(12) noconstant method=uls;
run;
forecast out=b lead=24 id=date interval=month noprint;
quit;
The printed output from the IDENTIFY statement is shown in
Output 7.2.2.
The autocorrelation plots shown are for the twice differenced series
(1-B)(1-B12)X.
Note that the autocorrelation functions have the
pattern characteristic of a first-order moving average process
combined with a seasonal moving average process with lag 12.
Output 7.2.2: IDENTIFY Statement Output
Name of Variable = xlog |
Period(s) of Differencing |
1,12 |
Mean of Working Series |
0.000291 |
Standard Deviation |
0.045673 |
Number of Observations |
131 |
Observation(s) eliminated by differencing |
13 |
Autocorrelations |
Lag |
Covariance |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
Std Error |
0 |
0.0020860 |
1.00000 |
| |********************|
|
0 |
1 |
-0.0007116 |
-.34112 |
| *******| . |
|
0.087370 |
2 |
0.00021913 |
0.10505 |
| . |** . |
|
0.097006 |
3 |
-0.0004217 |
-.20214 |
| ****| . |
|
0.097870 |
4 |
0.00004456 |
0.02136 |
| . | . |
|
0.101007 |
5 |
0.00011610 |
0.05565 |
| . |* . |
|
0.101042 |
6 |
0.00006426 |
0.03080 |
| . |* . |
|
0.101275 |
7 |
-0.0001159 |
-.05558 |
| . *| . |
|
0.101347 |
8 |
-1.5867E-6 |
-.00076 |
| . | . |
|
0.101579 |
9 |
0.00036791 |
0.17637 |
| . |**** |
|
0.101579 |
10 |
-0.0001593 |
-.07636 |
| . **| . |
|
0.103891 |
11 |
0.00013431 |
0.06438 |
| . |* . |
|
0.104318 |
12 |
-0.0008065 |
-.38661 |
| ********| . |
|
0.104621 |
13 |
0.00031624 |
0.15160 |
| . |*** . |
|
0.115011 |
14 |
-0.0001202 |
-.05761 |
| . *| . |
|
0.116526 |
15 |
0.00031200 |
0.14957 |
| . |*** . |
|
0.116744 |
"." marks two standard errors |
|
Inverse Autocorrelations |
Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
1 |
0.41027 |
| . |******** |
|
2 |
0.12711 |
| . |*** |
|
3 |
0.10189 |
| . |**. |
|
4 |
0.01978 |
| . | . |
|
5 |
-0.10310 |
| .**| . |
|
6 |
-0.11886 |
| .**| . |
|
7 |
-0.04088 |
| . *| . |
|
8 |
-0.05086 |
| . *| . |
|
9 |
-0.06022 |
| . *| . |
|
10 |
0.06460 |
| . |* . |
|
11 |
0.19907 |
| . |**** |
|
12 |
0.31709 |
| . |****** |
|
13 |
0.12434 |
| . |**. |
|
14 |
0.06583 |
| . |* . |
|
15 |
0.01515 |
| . | . |
|
Partial Autocorrelations |
Lag |
Correlation |
-1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1
|
1 |
-0.34112 |
| *******| . |
|
2 |
-0.01281 |
| . | . |
|
3 |
-0.19266 |
| ****| . |
|
4 |
-0.12503 |
| ***| . |
|
5 |
0.03309 |
| . |* . |
|
6 |
0.03468 |
| . |* . |
|
7 |
-0.06019 |
| . *| . |
|
8 |
-0.02022 |
| . | . |
|
9 |
0.22558 |
| . |***** |
|
10 |
0.04307 |
| . |* . |
|
11 |
0.04659 |
| . |* . |
|
12 |
-0.33869 |
| *******| . |
|
13 |
-0.10918 |
| .**| . |
|
14 |
-0.07684 |
| .**| . |
|
15 |
-0.02175 |
| . | . |
|
|
Autocorrelation Check for White Noise |
To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
6 |
23.27 |
6 |
0.0007 |
-0.341 |
0.105 |
-0.202 |
0.021 |
0.056 |
0.031 |
12 |
51.47 |
12 |
<.0001 |
-0.056 |
-0.001 |
0.176 |
-0.076 |
0.064 |
-0.387 |
|
The results of the ESTIMATE statement are shown in Output 7.2.3.
Output 7.2.3: ESTIMATE Statement Output
Unconditional Least Squares Estimation |
Parameter |
Estimate |
Approx Std Error |
t Value |
Pr > |t| |
Lag |
MA1,1 |
0.39594 |
0.08149 |
4.86 |
<.0001 |
1 |
MA2,1 |
0.61331 |
0.07961 |
7.70 |
<.0001 |
12 |
Variance Estimate |
0.001363 |
Std Error Estimate |
0.036921 |
AIC |
-484.755 |
SBC |
-479.005 |
Number of Residuals |
131 |
Correlations of Parameter Estimates |
Parameter |
MA1,1 |
MA2,1 |
MA1,1 |
1.000 |
-0.055 |
MA2,1 |
-0.055 |
1.000 |
Autocorrelation Check of Residuals |
To Lag |
Chi-Square |
DF |
Pr > ChiSq |
Autocorrelations |
6 |
5.56 |
4 |
0.2349 |
0.022 |
0.024 |
-0.125 |
-0.129 |
0.057 |
0.065 |
12 |
8.49 |
10 |
0.5816 |
-0.065 |
-0.042 |
0.102 |
-0.060 |
0.023 |
0.007 |
18 |
13.23 |
16 |
0.6560 |
0.022 |
0.039 |
0.045 |
-0.162 |
0.035 |
0.001 |
24 |
24.99 |
22 |
0.2978 |
-0.106 |
-0.104 |
-0.037 |
-0.027 |
0.219 |
0.040 |
Model for variable xlog |
Period(s) of Differencing |
1,12 |
Moving Average Factors |
Factor 1: |
1 - 0.39594 B**(1) |
Factor 2: |
1 - 0.61331 B**(12) |
|
The following statements retransform the forecast values
to get forecasts in the original scales.
See the section "Forecasting Log Transformed Data"
earlier in this chapter for more information.
data c;
set b;
x = exp( xlog );
forecast = exp( forecast + std*std/2 );
l95 = exp( l95 );
u95 = exp( u95 );
run;
The forecasts and their confidence limits are plotted
using the following PROC GPLOT step.
The plot is shown in Output 7.2.4.
symbol1 i=none v=star;
symbol2 i=join v=circle;
symbol3 i=join v=none l=3;
proc gplot data=c;
where date >= '1jan58'd;
plot x * date = 1 forecast * date = 2
l95 * date = 3 u95 * date = 3 /
overlay haxis= '1jan58'd to '1jan62'd by year;
run;
Output 7.2.4: Plot of the Forecast for the Original Series
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.