Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The ARIMA Procedure

OUTEST= Data Set

PROC ARIMA writes the parameter estimates for a model to an output data set when the OUTEST= option is specified in the ESTIMATE statement. The OUTEST= data set contains the following:

The variables for the model parameters are named as follows:

ERRORVAR
This numeric variable contains the variance estimate. The _TYPE_=EST observation for this variable contains the estimated error variance, and the remaining observations are missing.

MU
This numeric variable contains values for the mean parameter for the model. (This variable is not created if NOCONSTANT is specified.)

MAj_k
These numeric variables contain values for the moving average parameters. The variables for moving average parameters are named MAj_k, where j is the factor number, and k is the index of the parameter within a factor.

ARj_k
These numeric variables contain values for the autoregressive parameters. The variables for autoregressive parameters are named ARj_k, where j is the factor number, and k is the index of the parameter within a factor.

Ij_k
These variables contain values for the transfer function parameters. Variables for transfer function parameters are named Ij_k, where j is the number of the INPUT variable associated with the transfer function component, and k is the number of the parameter for the particular INPUT variable. INPUT variables are numbered according to the order in which they appear in the INPUT= list.

_STATUS_
This variable describes the convergence status of the model. A value of 0_CONVERGED indicates that the model converged.

The value of the _TYPE_ variable for each observation indicates the kind of value contained in the variables for model parameters for the observation. The OUTEST= data set contains observations with the following _TYPE_ values:

EST
the observation contains parameter estimates

STD
the observation contains approximate standard errors of the estimates

CORR
the observation contains correlations of the estimates. OUTCORR must be specified to get these observations.

COV
the observation contains covariances of the estimates. OUTCOV must be specified to get these observations.

FACTOR
the observation contains values that identify for each parameter the factor that contains it. Negative values indicate denominator factors in transfer function models.

LAG
the observation contains values that identify the lag associated with each parameter

SHIFT
the observation contains values that identify the shift associated with the input series for the parameter

The values given for _TYPE_=FACTOR, _TYPE_=LAG, or _TYPE_=SHIFT observations enable you to reconstruct the model employed when provided with only the OUTEST= data set.

OUTEST= Examples

This section clarifies how model parameters are stored in the OUTEST= data set with two examples.

Consider the following example:


   proc arima data=input;
      identify var=y cross=(x1 x2);
      estimate p=(1)(6) q=(1,3)(12) input=(x1 x2) outest=est;
   quit;
   proc print data=est;
   run;


The model specified by these statements is

Y_{t}={\mu}+{\omega}_{1,0}X_{1,t}+{\omega}_{2,0}X_{2,t}
+ \frac{(1-{\theta}_{11...
 ...eta}_{12}B^3)(1-{\theta}_{21}B^{12})}{(1-{\phi}_{11}B)(1-{\phi}_{21}B^6)} a_{t}

The OUTEST= data set contains the values shown in Table 7.9.

Table 7.9: OUTEST= Data Set for First Example
Obs _TYPE_ Y MU MA1_1 MA1_2 MA2_1 AR1_1 AR2_1 I1_1 I2_1
1EST{{\sigma}^2}{\mu}{{\theta}_{11}}{{\theta}_{12}}{{\theta}_{21}}{{\phi}_{11}}{{\phi}_{21}}{{\omega}_{1,0}}{{\omega}_{2,0}}
2STD.se {\mu}se {{\theta}_{11}}se {{\theta}_{12}}se {{\theta}_{21}}se {{\phi}_{11}}se {{\phi}_{21}}se {{\omega}_{1,0}}se {{\omega}_{2,0}}
3FACTOR.01121211
4LAG.013121600
5SHIFT.00000000


Note that the symbols in the rows for _TYPE_=EST and _TYPE_=STD in Table 7.9 would be numeric values in a real data set.

Next, consider the following example:


   proc arima data=input;
      identify var=y cross=(x1(2) x2(1));
      estimate p=1 q=1 input=(2 $ (1)/(1,2)x1 1 $ /(1)x2) outest=est;
   quit;
   proc print data=est;
   run;


The model specified by these statements is

Y_{t}={\mu}+\frac{{\omega}_{10}-{\omega}_{11}B}{1-{\delta}_{11}B
-{\delta}_{12}...
 ...0}}{1-{\delta}_{21}B}X_{2,t-1}
+\frac{(1-{\theta}_{1}B)}{(1-{\phi}_{1}B)}a_{t}

The OUTEST= data set contains the values shown in Table 7.10.

Table 7.10: OUTEST= Data Set for Second Example
Obs _TYPE_ Y MU MA1_1 AR1_1 I1_1 I1_2 I1_3 I1_4 I2_1 I2_2
1EST{{\sigma}^2}{\mu}{{\theta}_{1}}{\phi}_{1}{{\omega}_{10}}{{\omega}_{11}}{{\delta}_{11}}{{\delta}_{12}}{{\omega}_{20}}{{\delta}_{21}}
2STD.se {\mu}se {{\theta}_{1}}se {\phi}_{1}se {{\omega}_{10}}se {{\omega}_{11}}se {{\delta}_{11}}se {{\delta}_{12}}se {{\omega}_{20}}se {{\delta}_{21}}
3FACTOR.01111-1-11-1
4LAG.011011201
5SHIFT.000222211

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.