Example 19.2: Grunfeld's Model Estimated with SUR
The following example was used by Zellner in his classic 1962 paper on
seemingly unrelated regressions.
Different stock prices often move in the same direction at a
given point in time.
The SUR technique may provide more efficient estimates than OLS
in this situation.
The following statements read the data.
(The prefix GE stands for General Electric and WH stands for Westinghouse.)
*---------Zellner's Seemingly Unrelated Technique------------*
| A. Zellner, "An Efficient Method of Estimating Seemingly |
| Unrelated Regressions and Tests for Aggregation Bias," |
| JASA 57(1962) pp.348-364 |
| |
| J.C.G. Boot, "Investment Demand: an Empirical Contribution |
| to the Aggregation Problem," IER 1(1960) pp.3-30. |
| |
| Y. Grunfeld, "The Determinants of Corporate Investment," |
| Unpublished thesis, Chicago, 1958 | |
*------------------------------------------------------------*;
data grunfeld;
input year ge_i ge_f ge_c wh_i wh_f wh_c;
label ge_i = 'Gross Investment, GE'
ge_c = 'Capital Stock Lagged, GE'
ge_f = 'Value of Outstanding Shares Lagged, GE'
wh_i = 'Gross Investment, WH'
wh_c = 'Capital Stock Lagged, WH'
wh_f = 'Value of Outstanding Shares Lagged, WH';
cards;
1935 33.1 1170.6 97.8 12.93 191.5 1.8
1936 45.0 2015.8 104.4 25.90 516.0 .8
1937 77.2 2803.3 118.0 35.05 729.0 7.4
1938 44.6 2039.7 156.2 22.89 560.4 18.1
1939 48.1 2256.2 172.6 18.84 519.9 23.5
1940 74.4 2132.2 186.6 28.57 628.5 26.5
1941 113.0 1834.1 220.9 48.51 537.1 36.2
1942 91.9 1588.0 287.8 43.34 561.2 60.8
1943 61.3 1749.4 319.9 37.02 617.2 84.4
1944 56.8 1687.2 321.3 37.81 626.7 91.2
1945 93.6 2007.7 319.6 39.27 737.2 92.4
1946 159.9 2208.3 346.0 53.46 760.5 86.0
1947 147.2 1656.7 456.4 55.56 581.4 111.1
1948 146.3 1604.4 543.4 49.56 662.3 130.6
1949 98.3 1431.8 618.3 32.04 583.8 141.8
1950 93.5 1610.5 647.4 32.24 635.2 136.7
1951 135.2 1819.4 671.3 54.38 723.8 129.7
1952 157.3 2079.7 726.1 71.78 864.1 145.5
1953 179.5 2371.6 800.3 90.08 1193.5 174.8
1954 189.6 2759.9 888.9 68.60 1188.9 213.5
;
The following statements compute the SUR estimates for the Grunfeld model.
proc syslin data=grunfeld sur;
ge: model ge_i = ge_f ge_c;
westing: model wh_i = wh_f wh_c;
run;
The PROC SYSLIN output is shown in Output 19.2.1.
Output 19.2.1: PROC SYSLIN Output for SUR
The SYSLIN Procedure |
Ordinary Least Squares Estimation |
Model |
GE |
Dependent Variable |
ge_i |
Label |
Gross Investment, GE |
Analysis of Variance |
Source |
DF |
Sum of Squares |
Mean Square |
F Value |
Pr > F |
Model |
2 |
31632.03 |
15816.02 |
20.34 |
<.0001 |
Error |
17 |
13216.59 |
777.4463 |
|
|
Corrected Total |
19 |
44848.62 |
|
|
|
Root MSE |
27.88272 |
R-Square |
0.70531 |
Dependent Mean |
102.29000 |
Adj R-Sq |
0.67064 |
Coeff Var |
27.25850 |
|
|
Parameter Estimates |
Variable |
DF |
Parameter Estimate |
Standard Error |
t Value |
Pr > |t| |
Variable Label |
Intercept |
1 |
-9.95631 |
31.37425 |
-0.32 |
0.7548 |
Intercept |
ge_f |
1 |
0.026551 |
0.015566 |
1.71 |
0.1063 |
Value of Outstanding Shares Lagged, GE |
ge_c |
1 |
0.151694 |
0.025704 |
5.90 |
<.0001 |
Capital Stock Lagged, GE |
|
The SYSLIN Procedure |
Ordinary Least Squares Estimation |
Model |
WESTING |
Dependent Variable |
wh_i |
Label |
Gross Investment, WH |
Analysis of Variance |
Source |
DF |
Sum of Squares |
Mean Square |
F Value |
Pr > F |
Model |
2 |
5165.553 |
2582.776 |
24.76 |
<.0001 |
Error |
17 |
1773.234 |
104.3079 |
|
|
Corrected Total |
19 |
6938.787 |
|
|
|
Root MSE |
10.21312 |
R-Square |
0.74445 |
Dependent Mean |
42.89150 |
Adj R-Sq |
0.71438 |
Coeff Var |
23.81153 |
|
|
Parameter Estimates |
Variable |
DF |
Parameter Estimate |
Standard Error |
t Value |
Pr > |t| |
Variable Label |
Intercept |
1 |
-0.50939 |
8.015289 |
-0.06 |
0.9501 |
Intercept |
wh_f |
1 |
0.052894 |
0.015707 |
3.37 |
0.0037 |
Value of Outstanding Shares Lagged, WH |
wh_c |
1 |
0.092406 |
0.056099 |
1.65 |
0.1179 |
Capital Stock Lagged, WH |
|
The SYSLIN Procedure |
Seemingly Unrelated Regression Estimation |
Cross Model Covariance |
|
GE |
WESTING |
GE |
777.446 |
207.587 |
WESTING |
207.587 |
104.308 |
Cross Model Correlation |
|
GE |
WESTING |
GE |
1.00000 |
0.72896 |
WESTING |
0.72896 |
1.00000 |
Cross Model Inverse Correlation |
|
GE |
WESTING |
GE |
2.13397 |
-1.55559 |
WESTING |
-1.55559 |
2.13397 |
Cross Model Inverse Covariance |
|
GE |
WESTING |
GE |
0.002745 |
-.005463 |
WESTING |
-.005463 |
0.020458 |
|
The SYSLIN Procedure |
Seemingly Unrelated Regression Estimation |
System Weighted MSE |
0.9719 |
Degrees of freedom |
34 |
System Weighted R-Square |
0.6284 |
Model |
GE |
Dependent Variable |
ge_i |
Label |
Gross Investment, GE |
Parameter Estimates |
Variable |
DF |
Parameter Estimate |
Standard Error |
t Value |
Pr > |t| |
Variable Label |
Intercept |
1 |
-27.7193 |
29.32122 |
-0.95 |
0.3577 |
Intercept |
ge_f |
1 |
0.038310 |
0.014415 |
2.66 |
0.0166 |
Value of Outstanding Shares Lagged, GE |
ge_c |
1 |
0.139036 |
0.024986 |
5.56 |
<.0001 |
Capital Stock Lagged, GE |
|
The SYSLIN Procedure |
Seemingly Unrelated Regression Estimation |
Model |
WESTING |
Dependent Variable |
wh_i |
Label |
Gross Investment, WH |
Parameter Estimates |
Variable |
DF |
Parameter Estimate |
Standard Error |
t Value |
Pr > |t| |
Variable Label |
Intercept |
1 |
-1.25199 |
7.545217 |
-0.17 |
0.8702 |
Intercept |
wh_f |
1 |
0.057630 |
0.014546 |
3.96 |
0.0010 |
Value of Outstanding Shares Lagged, WH |
wh_c |
1 |
0.063978 |
0.053041 |
1.21 |
0.2443 |
Capital Stock Lagged, WH |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.