Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
The SPECTRA Procedure

Kernels

Kernels are used to smooth the periodogram by using a weighted moving average of nearby points. A smoothed periodogram is defined by the following equation.

\hat{J}_{i}(\rm{l}(q)) =
 \sum_{{\tau} = -\rm{l}(q)}^{\rm{l}(q)}{\rm{w}( \frac{{\tau}}{\rm{l}(q)} )
 \tilde{J}_{i+{\tau}}}

where w(x) is the kernel or weight function. At the endpoints, the moving average is computed cyclically; that is,

\tilde{J}_{i+{\tau}} =
\cases{
 J_{i+{\tau}} & 0 \lt= i+{\tau}\space \lt= q \c...
 ...)} & i+{\tau}\space \lt 0 \cr
 J_{q-(i+{\tau})} & i+{\tau}\space \gt q \cr
 }

The SPECTRA procedure supports the following kernels. They are listed with their default bandwidth functions.

Bartlett: KERNEL BART

\rm{w}(x)
 &=&
 \cases{
 1-{| x|} & {| x|}{\le}1\space \cr
 0 & \rm{otherwise} \cr
 }
 \cr
 \rm{l}(q) &=& \frac{1}2 q^{1 / 3}

Parzen: KERNEL PARZEN

\rm{w}(x)
 &=&
 \cases{
 1-6{| x|}^2 + 6{| x|}^3 &
 {0{\le}{| x|}{\le}\frac{...
 ...{\le}1}\space \cr
 0 & \rm{otherwise}
 }
 \cr
 \rm{l}(q)
 &=&
 q^{1 / 5}

Quadratic Spectral: KERNEL QS

\rm{w}(x)
 &=& \frac{25}{12{\pi}^2 x^2}
 ( \frac{{sin}(6{\pi}x/5)}{6{\pi}x/5} - {cos}(6{\pi}x/5) 
 )
 \cr
 \rm{l}(q)
 &=&
 \frac{1}2 q^{1 / 5}

Tukey-Hanning: KERNEL TUKEY

\rm{w}(x)
 &=&
 \cases{
 (1+{cos}( {\pi} x))/2 & {| x|}{\le}1\space \cr
 0 & \rm{otherwise} \cr
 }
 \cr
 \rm{l}(q)
 &=&
 \frac{2}3 q^{1 / 5}

Truncated: KERNEL TRUNCAT

\rm{w}(x)
 &=&
 \cases{
 1 & {| x|}{\le}1\space \cr
 0 & \rm{otherwise} \cr
 }
 \cr
 \rm{l}(q)
 &=&
 \frac{1}4 q^{1 / 5}

spekrnl.gif (3616 bytes)

Figure 17.1: Kernels for Smoothing

Refer to Andrews (1991) for details on the properties of these kernels.

Chapter Contents
Chapter Contents
Previous
Previous
Next
Next
Top
Top

Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.