Example 16.2: Multipliers for a Third-Order System
This example shows how to
fit and simulate a single equation dynamic model with third-order lags.
It then shows how to convert the third-order equation into a
three equation system with only first-order lags,
so that the SIMLIN procedure can compute multipliers.
(See the section "Multipliers for Higher Order Lags"
earlier in this chapter for more information.)
The input data set TEST is created from simulated data.
A partial listing of the data set TEST produced by PROC PRINT is shown
in Output 16.2.1.
title1 'Simulate Equation with Third-Order Lags';
title2 'Listing of Simulated Input Data';
proc print data=test(obs=10);
run;
Output 16.2.1: Partial Listing of Input Data Set
Simulate Equation with Third-Order Lags |
Listing of Simulated Input Data |
Obs |
y |
ylag1 |
ylag2 |
ylag3 |
x |
n |
1 |
8.2369 |
8.5191 |
6.9491 |
7.8800 |
-1.2593 |
1 |
2 |
8.6285 |
8.2369 |
8.5191 |
6.9491 |
-1.6805 |
2 |
3 |
10.2223 |
8.6285 |
8.2369 |
8.5191 |
-1.9844 |
3 |
4 |
10.1372 |
10.2223 |
8.6285 |
8.2369 |
-1.7855 |
4 |
5 |
10.0360 |
10.1372 |
10.2223 |
8.6285 |
-1.8092 |
5 |
6 |
10.3560 |
10.0360 |
10.1372 |
10.2223 |
-1.3921 |
6 |
7 |
11.4835 |
10.3560 |
10.0360 |
10.1372 |
-2.0987 |
7 |
8 |
10.8508 |
11.4835 |
10.3560 |
10.0360 |
-1.8788 |
8 |
9 |
11.2684 |
10.8508 |
11.4835 |
10.3560 |
-1.7154 |
9 |
10 |
12.6310 |
11.2684 |
10.8508 |
11.4835 |
-1.8418 |
10 |
|
The REG procedure processes the input data and writes the
parameter estimates to the OUTEST= data set A.
title2 'Estimated Parameters';
proc reg data=test outest=a;
model y=ylag3 x;
run;
title2 'Listing of OUTEST= Data Set';
proc print data=a;
run;
Output 16.2.2 shows the printed output produced by the REG procedure,
and Output 16.2.3 displays the OUTEST= data set A produced.
Output 16.2.2: Estimates and Fit Information from PROC REG
Simulate Equation with Third-Order Lags |
Estimated Parameters |
The REG Procedure |
Model: MODEL1 |
Dependent Variable: y |
Analysis of Variance |
Source |
DF |
Sum of Squares |
Mean Square |
F Value |
Pr > F |
Model |
2 |
173.98377 |
86.99189 |
1691.98 |
<.0001 |
Error |
27 |
1.38818 |
0.05141 |
|
|
Corrected Total |
29 |
175.37196 |
|
|
|
Root MSE |
0.22675 |
R-Square |
0.9921 |
Dependent Mean |
13.05234 |
Adj R-Sq |
0.9915 |
Coeff Var |
1.73721 |
|
|
Parameter Estimates |
Variable |
DF |
Parameter Estimate |
Standard Error |
t Value |
Pr > |t| |
Intercept |
1 |
0.14239 |
0.23657 |
0.60 |
0.5523 |
ylag3 |
1 |
0.77121 |
0.01723 |
44.77 |
<.0001 |
x |
1 |
-1.77668 |
0.10843 |
-16.39 |
<.0001 |
|
Output 16.2.3: The OUTEST= Data Set Created by PROC REG
Simulate Equation with Third-Order Lags |
Listing of OUTEST= Data Set |
Obs |
_MODEL_ |
_TYPE_ |
_DEPVAR_ |
_RMSE_ |
Intercept |
ylag3 |
x |
y |
1 |
MODEL1 |
PARMS |
y |
0.22675 |
0.14239 |
0.77121 |
-1.77668 |
-1 |
|
The SIMLIN procedure processes the TEST data set
using the estimates from PROC REG.
The following statements perform the simulation and
write the results to the OUT= data set OUT2.
title2 'Simulation of Equation';
proc simlin est=a data=test nored;
endogenous y;
exogenous x;
lagged ylag3 y 3;
id n;
output out=out1 predicted=yhat residual=yresid;
run;
The printed output from the SIMLIN procedure is shown in Output 16.2.4.
Output 16.2.4: Output Produced by PROC SIMLIN
Simulate Equation with Third-Order Lags |
Simulation of Equation |
Fit Statistics |
Variable |
N |
Mean Error |
Mean Pct Error |
Mean Abs Error |
Mean Abs Pct Error |
RMS Error |
RMS Pct Error |
y |
30 |
-0.0233 |
-0.2268 |
0.2662 |
2.05684 |
0.3408 |
2.6159 |
|
The following statements plot the actual and predicted values,
as shown in Output 16.2.5.
title2 'Plots of Simulation Results';
symbol1 i=none v=star;
symbol2 i=join v=circle;
proc gplot data=out1;
plot yhat*n=1 y*n=2 / overlay;
run;
Output 16.2.5: Plot of Predicted and Actual Values
Next, the input data set TEST is modified by creating two new
variables, YLAG1X and YLAG2X, that are equal to YLAG1 and YLAG2.
These variables are used in the SYSLIN procedure.
(The estimates produced by PROC SYSLIN are the same as before
and are not shown.)
A listing of the OUTEST= data set B created by PROC SYSLIN
is shown in Output 16.2.6.
data test2;
set test;
ylag1x=ylag1;
ylag2x=ylag2;
run;
title2 'Estimation of parameters and definition of identities';
proc syslin data=test2 outest=b;
endogenous y ylag1x ylag2x;
model y=ylag3 x;
identity ylag1x=ylag1;
identity ylag2x=ylag2;
run;
title2 'Listing of OUTEST= data set from PROC SYSLIN';
proc print data=b;
run;
Output 16.2.6: Listing of OUTEST= Data Set Created from PROC SYSLIN
Simulate Equation with Third-Order Lags |
Listing of OUTEST= data set from PROC SYSLIN |
Obs |
_TYPE_ |
_STATUS_ |
_MODEL_ |
_DEPVAR_ |
_SIGMA_ |
Intercept |
ylag3 |
x |
ylag1 |
ylag2 |
y |
ylag1x |
ylag2x |
1 |
OLS |
0 Converged |
y |
y |
0.22675 |
0.14239 |
0.77121 |
-1.77668 |
. |
. |
-1 |
. |
. |
2 |
IDENTITY |
0 Converged |
|
ylag1x |
. |
0.00000 |
. |
. |
1 |
. |
. |
-1 |
. |
3 |
IDENTITY |
0 Converged |
|
ylag2x |
. |
0.00000 |
. |
. |
. |
1 |
. |
. |
-1 |
|
The SIMLIN procedure is used to compute the reduced form and multipliers.
The OUTEST= data set B from PROC SYSLIN is used as the EST= data
set for the SIMLIN procedure.
The following statements perform the multiplier analysis.
title2 'Simulation of transformed first-order equation system';
proc simlin est=b data=test2 total interim=2;
endogenous y ylag1x ylag2x;
exogenous x;
lagged ylag1 y 1 ylag2 ylag1x 1 ylag3 ylag2x 1;
id n;
output out=out2 predicted=yhat residual=yresid;
run;
Output 16.2.7 shows the interim 2 and total multipliers
printed by the SIMLIN procedure.
Output 16.2.7: Interim 2 and Total Multipliers
Simulate Equation with Third-Order Lags |
Simulation of transformed first-order equation system |
Interim Multipliers for Interim 2 |
Variable |
x |
Intercept |
y |
0.000000 |
0.0000000 |
ylag1x |
0.000000 |
0.0000000 |
ylag2x |
-1.776682 |
0.1423865 |
Total Multipliers |
Variable |
x |
Intercept |
y |
-7.765556 |
0.6223455 |
ylag1x |
-7.765556 |
0.6223455 |
ylag2x |
-7.765556 |
0.6223455 |
|
Copyright © 1999 by SAS Institute Inc., Cary, NC, USA. All rights reserved.