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FPGA-based accelerators are increasingly popular across a broad range of applications, because they offer
massive parallelism, high energy efficiency, and great flexibility for customizations. However, difficulties in
programming and integrating FPGAs have hindered their widespread adoption. Since the mid 2000s, there has
been extensive research and development toward making FPGAs accessible to software-inclined developers,
besides hardware specialists. Many programming models and automated synthesis tools, such as high-level
synthesis, have been proposed to tackle this grand challenge. In this survey, we describe the progression and
future prospects of the ongoing journey in significantly improving the software programmability of FPGAs.
We first provide a taxonomy of the essential techniques for building a high-performance FPGA accelerator,
which requires customizations of the compute engines, memory hierarchy, and data representations. We
then summarize a rich spectrum of work on programming abstractions and optimizing compilers that provide
different trade-offs between performance and productivity. Finally, we highlight several additional challenges
and opportunities that deserve extra attention by the community to bring FPGA-based computing to the
masses.
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1 INTRODUCTION

FPGA-based accelerator design primarily concerns performance and energy efficiency. An FPGA
programmer has the full freedom to (1) create deep custom pipelines that are composed of simple
(often low-bitwidth) compute units instead of full-blown ALUs, (2) construct highly parallel and
distributed control logic and on-chip storage, and (3) schedule dataflows in an explicit way to min-
imize off-chip memory accesses without using caches. This is in stark contrast with programming
microprocessors (i.e., CPUs) and general-purpose graphic processing units (i.e., GPUs), where the
underlying hardware architecture (instruction pipeline, memory hierarchy, etc.) is fixed, and the
control flow of a software program drives the instruction-based execution on the hardware. In
other words, FPGAs can be reconfigured/customized for a specific application or a domain of ap-
plications to exploit its massive fine-grained parallelism and on-chip bandwidth. This often leads
to a higher compute throughput, lower energy consumption, and a more predictable latency, when
compared to CPUs and GPUs.

Such great potential and flexibility do come at a substantial cost—the very low productivity of
programming FPGAs to achieve high performance in the real world. Even for seemingly simple
kernels (e.g., matrix matrix multiply, convolution, sparse matrix vector multiply), it is not uncom-
mon for expert FPGA programmers to spend several months, or even more than one year, to build
an accelerator that is both functional and performant on an actual device [213]. In a sense, the
extreme flexibility of fine-grained programmable logic on an FPGA is both its greatest asset and
its biggest liability. The end result is that FPGA-based acceleration is one of the most promising
approaches to solving challenging problems across many domains in principle, but is within reach
for only a few in practice, i.e., large enterprises that can afford teams of hardware and systems
experts for high-value applications [26, 88].

Why is it so hard to program FPGAs? First, it requires a paradigm shift of thinking—most pro-
grammers are used to von Neumann machines and they tend to think sequentially, with paral-
lelization added later as optimizations (at the level of threads, loops, etc.). However, an FPGA is a
spatial architecture that features a massive amount of compute units and memory elements such
as look-up tables (LUTs), DSP slices, registers, block RAMs, and more recent ultra RAMs and
network-on-chip (NoC). These hardware resources are distributed over the fabric (usually two-
dimensional) and run concurrently. Therefore, programmers have to think spatially and parallel
in the first place for FPGA-based acceleration. Unlike CPUs, FPGAs typically do not have a pre-
defined hardware cache hierarchy. To keep feeding data at a sufficient rate to the many parallel
compute engines, programmers need to build user-managed buffers to maximally utilize both off-
and on-chip memory bandwidth. This further adds to the programming complexity.

Second, conventional FPGA design tools mainly target hardware design experts instead of soft-
ware programmers. It takes significant effort to manually create and optimize accelerator architec-
tures using the traditional register-transfer-level (RTL) methodology. One must wrestle with
low-level hardware description language (HDL) descriptions and computer-aided design

(CAD) tools to implement a rich set of hardware customizations such as fixed-point arithmetic,
pipelining, banked memories, and double buffering. Even worse, synthesizing an RTL design to
a bitstream usually takes hours, or even days. This lengthy compile cycle makes design space

exploration (DSE) on FPGAs prohibitively expensive.
Third, FPGA designs have poor debuggability. For instance, when a synthesized design runs into

a deadlock on FPGAs, there is no easy way to stop the execution with a breakpoint and retrieve
a snapshot of the states of the design. Usually, only CPU-based hardware emulation and cycle-
accurate RTL simulation may help. The former does not model some important details of a real
FPGA accelerator and may behave inconsistently with the actual on-device execution. The latter
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is too slow for a complex design, since the simulation is running at a very low level of design
abstraction. Moreover, it is difficult to map the signal names in the final netlist back to variables in
the original design, as the variable names are often mangled during RTL synthesis and technology
mapping.

In short, it is an enormous challenge to achieve both high performance and high productivity
for FPGA programming. While similar productivity-performance tension also exists for CPUs and
GPUs, the problem is remarkably worse on FPGAs. As a result, there is a dire need for new com-

pilation/synthesis techniques and programming frameworks to enable productive design, exploration,

generation, and debugging of FPGA-based accelerators based on high-level languages. In the past
10–15 years, numerous research efforts have attempted to address this grand challenge of software-
defined FPGA acceleration, and many exciting progresses have been made in both academia and
industry.

Notably, recent years have seen promising development on high-level synthesis (HLS) for
FPGAs [57]. This is evidenced by the wide availability of commercial C/OpenCL-based HLS com-
pilers such as Xilinx Vivado/Vitis HLS [259], Intel SDK for OpenCL [122], and Microchip LegUp
HLS [180]. The field of FPGA-based acceleration is also more vibrant than ever, as there is a grow-
ing number of HLS-synthesized designs that accelerate a plethora of emerging applications such
as deep learning [247, 263, 270, 277], genomics [102, 116], graph analytics [30], and packet process-
ing [118, 244].

HLS allows programmers who are not specialized in hardware to more easily create a functional
FPGA design. However, one cannot expect the existing HLS compilers to automatically transform
a vanilla software program into a high-performance accelerator, certainly not in a push-button
manner. Instead, the original program often needs to be heavily optimized or restructured before
the benefits of custom acceleration can be exploited. To this end, programmers and tools have to
“collaborate,” to carry out a set of optimizations to customize the target hardware for a given appli-
cation. Performance-critical customizations must be implemented, no matter by the programmers
or the tools. How much automation should be expected from the tools, and how much control
should be given to the programmer, largely determine the design of the programming abstraction
and directly impact the productivity of the programming process.

There are a number of recent efforts that survey the fundamental FPGA technologies, com-
mon hardware customization techniques, and HLS tools. Trimberger reviews how Moore’s Law
has driven the invention, expansion, and accumulation of FPGA technologies in the past three
decades [237]. Kastner et al. [138] and Cong et al. [50, 52] describe some common set of optimiza-
tion techniques for FPGAs using Vivado HLS from software developers’ view. Licht et al. discuss
a more comprehensive set of HLS optimizations for high-performance computing using both Vi-
vado HLS and Intel OpenCL, including various techniques to enable pipelining, scaling, and effi-
cient memory access [77]. Cong et al. [57], Nane et al. [191], and Numan et al. [193], respectively,
survey the evolution of academic and commercial HLS tool development from 1980s to 2010, late
1990s to 2014, and 2000 to 2019.

In this article, we focus on the recent advances in the past 10 to 15 years on programming and
synthesis for software-defined FPGA acceleration. Guided by the roofline model [255], we survey a
prominent set of hardware customization techniques that systematically optimize the application-
/domain-specific FPGA accelerator designs to achieve high performance and energy efficiency.
We particularly focus on the techniques that are unique to custom accelerator designs, instead
of the well-known code optimizations that are established for CPU or GPU targets. We also dis-
cuss various state-of-the-art synthesis techniques, programming abstractions, and representative
tools that facilitate the automatic generation of customized accelerator architectures from software
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Fig. 1. Impact of different hardware customization techniques depicted in the roofline model—x-axis repre-

sents the operational density and y-axis represents the throughput; custom compute engines improve the

throughput by concurrently executing more operations per second; custom memory hierarchy can move

memory-bound design points toward a more compute-bound region by increasing data reuse and memory

bandwidth utilization; custom data representations can benefit both custom compute engines and memory

hierarchy, thus further lifting the compute roof.

programs, which is broader than previous surveys on HLS toolchains only [57, 73, 191, 193]. We
further highlight several key challenges the community must address to enable the mainstream
adoption of FPGA-based computing—the goal is to let domain experts, not just hardware special-
ists, produce efficient accelerators with fast compile-edit-run cycles.

2 ESSENTIAL CUSTOMIZATION TECHNIQUES FOR FPGA-BASED ACCELERATION

In this section, we focus on discussing various hardware customization techniques to address the
performance challenge of FPGA programming. Our goal here is to provide the audience insights
into how to systematically design high-performance accelerators given the massive amount of cus-

tomizable resources on FPGAs. These hardware customizations can be done manually, automatically,
or semi-automatically. To classify the hardware customizations in a systematic way, we leverage
the widely used roofline model [255] that visualizes the performance bottlenecks and optimization
directions.

As shown in Figure 1, in a roofline model, the x-axis represents the operational intensity (i.e.,
number of operations per byte of off-chip data access) while the y-axis represents the throughput
(i.e., number of operations per second). We can plot different design points (in red) on the diagram
according to the operational intensity and throughput. The highest achievable throughput of each
design point is limited by the compute roof and memory bandwidth roof (blue lines). In the left part,
the designs are memory-bound where the attainable throughput is limited by the off-chip memory
bandwidth. In the right part, the designs are compute-bound, where the maximum throughput is
determined by the amount of physically available computing resources (e.g., the maximum num-
ber of DSPs and LUTs on an FPGA). Similar to the terminology defined in Reference [255], here we
use “operations” as a generic term to indicate the essential primitives that characterize the com-
pute intensity of a given workload. Evidently, the meaning of this term is application specific. For
example, multiply accumulate (MAC) operations are commonly used for DSP and deep learning
applications. For FPGA-based acceleration, these operations may exploit customized data types,
which we discuss in a later section.

We classify the hardware customization techniques into the following major categories (also
shown in Figure 1):
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1. Custom Compute Engines. For compute-bound designs, custom compute engines can be
developed to move the accelerator throughput toward the compute roof. Inside such a com-
pute engine, designers typically explore the following pipeline and parallelization techniques
to execute more operations concurrently to improve its throughput [50, 53, 84]: (1) accelerator-
unique fine-grained custom pipeline, which is often deeply pipelined and tightly coupled with
fine-grained operator-level parallelization, different from CPUs and GPUs, (2) coarse-grained
parallelization that further parallelizes multiple fine-grained pipelines, which can be both homo-
geneous (i.e., data parallelism) and heterogeneous (i.e., task parallelism) parallelization, similar
to multicore processors, and/or (3) accelerator-unique coarse-grained pipeline that is composed
of multiple fine-grained pipelines.

2. Custom Memory Hierarchy. For memory-bound designs, the accelerator memory hierarchy
can be customized to move the design close to the (off-chip) memory bandwidth roof and move
it right toward a compute-bound design. Different from CPUs/GPUs where their memory hi-
erarchy is pre-designed and (almost) fixed, one unique opportunity (and challenge) for FPGAs
is that their memory hierarchy is flexible and can be fully customized. Common optimizations
include: (1) custom on-chip buffering and/or caching to improve data reuse and exploit much
higher on-chip memory bandwidth, and (2) streaming optimization and/or custom network-
on-chip to enable direct on-chip communication between multiple computing elements and/or
bypass off-chip memory access.

3. Custom Data Representations. Finally, for both compute- and memory-bound applications,
custom data representations with a reduced (or widened) bitwidth can play a vital and unique
role in further improving the accelerator throughput. On the one hand, it reduces the bytes of
off-chip data access required by computing operations and benefits the custom memory hierar-
chy. On the other hand, with reduced bit-width, a single fine-grained custom pipeline consumes
much fewer resources and one can accommodate more such pipelines in the custom compute
engine to achieve more coarse-grained parallelism and a higher throughput. Hence, with the
custom precision, the compute roof is further moved up as the same FPGA can now run more
operations.

In the following, we discuss more details of these hardware customization techniques and their
interplay.

2.1 Custom Compute Engines

The primary objective of customizing the compute engines is to improve the throughput of the
accelerator, i.e., moving upward in the roofline diagram (see Figure 1). To achieve this goal, an
FPGA accelerator needs to make the best use of the on-chip resources to maximize hardware
parallelism and compute efficiency by instantiating many processing elements (PEs) in parallel.
In this article, we use “PE” as a generic term and loosely define it as a replicable hardware building
block that executes a fine-grained loop (or function) pipeline with tens to hundreds operations.
Similar to the notion of operations used in the roofline model, the exact function of a PE is highly
application specific. To be more precise, we can break down throughput into three major factors,
as shown in the following equation:

Throughput (OPs/sec) = Hardware Parallelism (max OPs/cycle)

× Compute Utilization (busy OPs/max OPs)

× Clock Frequency (cycles/sec) (1)

Hardware Parallelism = #PEs × PE-Level Parallelism ∝ #PEs × #OPs per PE

II
.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 14, No. 4, Article 17. Pub. date: September 2021.



17:6 Y.-H. Lai et al.

Fig. 2. Major forms of custom compute engines—At a fine granularity, each PE runs a custom pipeline with

a low II. In addition, optimizations such as operation chaining (i.e., multiple operations scheduled into one

cycle as combinational logic) can reduce the area and sometimes the II. We can then connect multiple PEs

to build a coarse-grained heterogeneous or homogeneous pipeline (e.g., systolic arrays). Meanwhile, with

optimizations such as PE duplication, we can achieve coarse-grained homogeneous parallelization (e.g., data-

level parallelism). We can also build a coarse-grained heterogeneous pipeline using heterogeneous tasks

composed of homogeneous PEs (e.g., task-level parallelism).

Here hardware parallelism represents the maximum number of operations that can be concurrently
executed per cycle with the given accelerator architecture, which typically exploits both paralleliza-
tion and pipelining. This term can further be decomposed into a product of coarse-grained parallel
factor (i.e., the number of PEs) and fine-grained PE-level pipeline parallelism that is typically re-
flected by the pipeline initiation interval (II)—the smaller the II, the higher the pipeline throughput.
Compute utilization is defined to be a ratio that captures the utilization of the physical compute
resources, namely, the functional units that execute the operations defined in the software algo-
rithm. These functional units should be kept as busy as possible (ideally near 100% utilization).
Clock frequency determines the actual operating clock rate of the hardware circuits that run on
the FPGA.

Unlike CPUs and GPUs where the clock rate is fixed and often at the order of GHz for a given
device, the operating frequency of an FPGA accelerator is usually one order-of-magnitude lower
and highly depends on the degree of pipelining and parallelization, as well as the resource usage of
the underlying architecture. Hence, FPGA programmers must significantly improve the other two
factors (i.e., hardware parallelism and compute utilization) and explore intricate design trade-offs
amongst the three factors.

In the following, we introduce a set of optimization techniques for customizing the compute
engines of an FPGA accelerator, which are classified by four dimensions. First, in terms of the
parallelism form, we have parallelization and pipelining. Second, in terms of granularity, we have
fine-grained and coarse-grained optimizations. We refer to the intra-PE parallelization/pipelining
as fine-grained optimizations. In the HLS terminology, the scope of such optimizations is limited
to a loop or function body where the inner loops, if any, are unrolled. We call the inter-PE opti-
mizations as coarse-grained. Third, the composition of the parallel or pipelined PEs can be either
homogeneous or heterogeneous. Finally, these PEs can be scheduled statically at compile time and/or
dynamically at run time.

Figure 2 gives an overview of custom compute engines and examples of optimizations from the
first three dimensions (i.e., parallelism, granularity, and composition). Starting with fine-grained
optimizations (the left figure), the primary goal is to reduce the II of pipelines inside each PE. To
achieve that, one can apply techniques such as modulo scheduling, operation chaining and multi-
pumping, loop transformation, and dynamic scheduling. Moving forward, at a coarse granularity,
we focus on inter-PE optimizations. Depending on the composition of PEs, different techniques are
proposed. With homogeneous composition (the middle figure), we focus on data-level parallelism.
For instance, one can perform PE duplication for parallelization and build systolic architectures for
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pipelining. With heterogeneous composition (the right figure), we focus on task-level parallelism,
where we have dataflow pipelining and multithreading for parallelization.

2.1.1 Fine-grained Pipelining (and Parallelization). In contrast to general-purpose processors,
FPGAs allow a programmer to build a deep application-specific pipeline that obviates the need for
instruction decoding, branch prediction, and out-of-order logic, which incur nontrivial overhead
in both performance and energy. In this section, we discuss the common techniques to improve
the PE-level throughput through fine-grained pipelining, parallelization, as well as some of the
associated trade-offs between resource efficiency and frequency.

Modulo Scheduling—Pipelining, especially loop pipelining, is one of the most important opti-
mizations in HLS, because it allows successive loop iterations to be overlapped during execution
(the same technique also applies to overlapping the function invocations). Typically enabled by
modulo scheduling [211], loop pipelining creates a schedule for a single loop iteration so that the
same schedule can be repeated at a constant initiation interval (II). Minimizing the II is con-
sidered the foremost objective of pipeline scheduling. By reducing the II of a loop pipeline, we
improve the throughput by increasing the hardware parallelism, as shown in Equation (1). While
II determines the amount of parallelism, it is inherently limited by two major factors (1) inter-
iteration dependence (i.e., recurrence) between operations in different loop iterations, and (2) the
available amount of resources (e.g., memory bandwidth, limited DSPs). In fact, modulo scheduling
is an NP-Hard problem in the presence of both recurrence and resource constraints [211].

There exist a rich set of heuristics that tackle the problem by making different trade-offs in
solution quality and compile time. Several state-of-the-art HLS tools employ the more versatile
heuristic based on a system of integer difference constraints (SDC), which can naturally han-
dle various hardware-specific design constraints [22, 62, 68, 274]. SDC-based modulo scheduling
is rooted in a linear programming formulation and can globally optimize over constraints that can
be represented in the integer difference form, including both intra- and inter-iteration dependen-
cies. Notably, however, resource constraints can only be converted to the difference constraints
in a heuristic way. To address this limitation, Dai et al. [68] recently propose to couple SDC with
Boolean satisfiability (SAT) so that both timing and resource constraints can be exactly modeled
in a practically scalable solution to modulo scheduling.

Operation Chaining and Multi-Pumping—The pipeline efficiency can be further improved
by several operation-level optimizations that exploit the unique characteristics of key FPGA build-
ing blocks such as LUTs and DSP units. Operation chaining is one example, where a cluster
of dependent operations can be scheduled combinationally and mapped to just a few LUTs or
DSPs [267, 274]. As shown in Figure 3(b), chaining can reduce II by shortening the latency on the
critical dependence cycle. More chaining opportunities can be exposed when the effects of the
downstream technology mapping are also taken into consideration during scheduling. For exam-
ple, MAPS [233] shows that mapping-aware scheduling can chain more operations in a way to
shorten latency and significantly reduce the LUT usage for logic-operation-intensive applications.
This approach is extended to support modulo scheduling in Reference [278]. Aggressive operation
chaining can reduce area and allow more PEs to be allocated, although it may increase the critical
path delay of the resulting circuit. Hence, when using this optimization, an FPGA compiler (or
programmer) must balance the trade-off between the hardware parallelism and clock frequency.

Multi-pumping [21, 24] is another FPGA-unique optimization, which can be applied to sidestep
the resource constraint imposed by the limited number of on-chip DSP units (especially on embed-
ded FPGAs). It is important to note that the hardened DSP units on commercial FPGAs can run at
a much higher frequency (typically 2×) than the surrounding logic blocks. Therefore, it is possible
to map two multiply operations to a single DSP unit in one cycle, where each multiply completes
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Fig. 3. Examples of FPGA-specific fine-grained scheduling optimizations—The red arrow denotes an inter-

iteration dependence in the control-dataflow graph. Here, we assume only one DSP unit is available.

(a) Scheduling without chaining, where the II is bottlenecked by the recurrence; (b) operation chaining, where

the logical operations shift, and, and xor are chained and mapped into a single-level of LUTs, which reduces

the delay on the recurrence. Thus, the II is now limited by the resource constraint, i.e., two mul operations

but only one DSP; (c) multi-pumping, where we map two mul operations into a single DSP operating at a 2×
higher frequency. By resolving the the resource constraint, we achieve II = 1.

within half of the system clock cycle. This optimization is illustrated in Figure 3(c). Multi-pumping
can reduce pipeline II when the limited number of DSPs becomes the resource constraint. Addi-
tionally, it can reduce the DSP usage for a single PE and thus increase the hardware parallelism.

Loop Transformations that Improve Pipelining—Modulo scheduling typically does not al-
ter the underlying control data flow graph of the loop subject to pipelining. However, in many
cases, the inter-iteration dependencies can be removed (or alleviated) through code transforma-
tions in multi-dimensional iteration space. A helpful tutorial is given in Reference [77], which
summarizes a number of loop transformations that resolve the II-limiting recurrences through
reordering and interleaving nested loops.1 Polyhedral compilation is also increasingly used to im-
prove the efficiency of pipelining [15, 155, 161, 188, 207, 283].

To further increase the hardware parallelism, HLS designs commonly use loop unrolling in
combination with pipelining to increase the number of parallel operations per pipeline. Unlike
unrolling on CPUs, the unfolded copies of the loop body require additional hardware on FPGAs.
Nevertheless, an unrolled loop body is usually smaller than the original version, as unrolling often
enables additional code optimizations such as constant propagation. Some loop transformations
are also useful for increasing the utilization of the pipeline by minimizing “bubbles” due to the fill-
ing/draining of the pipeline. For example, loop flattening (also known as loop coalescing) can be
applied to coalesce a nested loop into a single-level flattened loop so that the pipeline continuously
executes the innermost loop without much frequent switching to an outer loop.

1The same paper [77] also includes a comprehensive table that summarizes the commonalities and differences between

traditional CPU-oriented code transformations and their counterparts in HLS. Hence, we do not repeat those discussions

here.
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Dynamic Scheduling—Certain data dependencies or resource contentions may occur in an
input-dependent manner, which are known as data or control hazards in the terminology of a pro-
cessor pipeline. These hazards may result in poor performance with the mainstream HLS tools,
as they cannot be resolved statically with compile-time analysis and transformations. There are
ongoing efforts to improve statically scheduled HLS to better handle these hazards [7, 69, 78, 159].
For example, Dai et al. [71] propose to insert application-specific hazard detection units into
the pipeline generated by a modulo scheduler. Variable-latency operations can also be handled
in a cost-effective way through pipeline flushing [70]. Another active line of research proposes
to generate dataflow circuits to enable dynamically scheduled pipeline that yields better-than-
worst-case performance in the presence of dynamic data dependencies or variable-latency opera-
tions [81, 117, 130–132]. However, extensive fine-grained handshaking is required to implement
dynamic scheduling, which often results in nontrivial overhead in both resource usage and clock
frequency. To address this challenge, a hybrid scheduling method is proposed, which partitions
the input program into statically and dynamically scheduled portions to improve efficiency [34].

2.1.2 Coarse-grained Pipelining and Parallelization. The coarse-grained optimizations involve
inter-PE parallelization and pipelining [59], where the composition of the PEs can be either ho-
mogeneous or heterogeneous. Compared to CPUs/GPUs, FPGAs have additional flexibility in cus-
tomizing the shape and topology of the parallel PE array and the synchronization mechanism
between PEs.

Inter-PE Parallelization—For computations that can be executed independently, one can al-
locate multiple PEs to execute them in a data-parallel fashion. This method is also known as PE
duplication or compute unit replication. There are many ways to perform PE duplication. One
example is unrolling the outer loop [50]. After loop unrolling, each unrolled inner-loop body be-
comes a PE that can be executed in parallel. A more automated approach is implemented in the
Fleet framework [235], which automatically generates massively parallel PEs along with a high-
performance memory controller. Many efforts realize homogeneous parallelization by leveraging
useful features in the input language [37, 198]. For instance, FCUDA [198] is a compilation flow
that maps CUDA code to FPGAs. This allows programmers to use the high-level CUDA APIs to de-
scribe coarse-grain data-level parallelism, where each thread-block inside a CUDA kernel becomes
a hardware PE that can be executed in parallel with other PEs.

Software multithreading constructs can be used to explicitly specify coarse-grained parallelism
for multiple (often heterogeneous) PEs. To this end, Hsiao et al. [113] propose a technique called
thread weaving, which statically schedules computation in each thread with the awareness of
other threads, and guarantees that the shared resources are accessed in a time-multiplexed and
non-interfering manner. There are also approaches that resolve synchronization dynamically.
FlexArch [28] is one example, which schedules the computations dynamically via work steal-
ing [12] and assigns them to customized PEs. With work stealing, the computations can be more
efficiently distributed and balanced across PEs.

Inter-PE Dataflow Pipelining—FPGAs programmers can also compose PEs (or tasks) into a
coarse-grained dataflow pipeline that is typically dynamically scheduled. By overlapping the exe-
cutions of different PEs and passing data between them with a streaming interface or Ping-Pong
buffers, one can overlap the PE execution and decouple the compute from memory accesses to
hide the off-chip memory access latency (more details in Section 2.2). Such dataflow pipelining is
well-suited for many application domains, such as image processing [35, 208, 249], machine learn-
ing [226, 254], graph processing [67, 142, 194, 268, 281], and network switching [199]. Current HLS
tools typically provide (vendor-specific) pragmas to realize dataflow pipelines of different forms.
In general, the dataflow architecture is more scalable if the PEs are connected by asynchronous
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Fig. 4. Overview of customizations for custom memory hierarchy.

channels, but at the cost of additional handshaking logic between PEs; the pipeline is more effi-
cient but perhaps less scalable (in terms of timing closure) if its stages are connected by wires or
registers pulsed by the same clock.

Similar to coarse-grained parallelization, a dataflow pipeline can be composed either hetero-
geneously or homogeneously. To construct heterogeneous pipelines, an example is the TAPA
framework [36], which defines a programming interface to describe the dataflow parallelism
within an application. The ElasticFlow architecture [234] is another example that implements the
loop body as a multi-stage pipeline. There also exist some application-specific dataflow architec-
tures [35, 108, 112, 214]. For instance, SODA [35] is a framework that generates a dataflow architec-
ture for stencil computation, where data elements are updated with some fixed patterns. With the
SODA framework, computations from different pipeline stages can be executed simultaneously
with designated forwarding units, which also serve as reuse buffers.

Systolic arrays represent a well-known class of homogeneous pipelines, where connected PEs
work rhythmically (shown in Figure 2). For each time step, each PE reads from its neighbors, pro-
cesses the data, and forwards the results to its neighbors. Systolic arrays are also considered as
a generalization of one-dimensional pipelining. There is a long line of research that focuses on
generating high-performance systolic arrays [16, 58, 58, 106, 151, 217, 229, 245, 254].

2.2 Custom Memory Hierarchy

As shown by the roofline model in Figure 1, the key for memory hierarchy customization is to
reduce the number of off-chip data accesses required by computing operations, i.e., increase the
operational intensity. First, one can explore on-chip buffering and caching techniques to improve
the on-chip data reuse. This is also often a key enabler of low-latency and high-throughput custom
compute engines. Second, one can explore streaming optimization and custom on-chip networks to
bypass off-chip memory access and enable fast communication between multiple compute engines.
Finally, for the essential off-chip memory accesses that cannot be avoided, one can explore data
access reorganization techniques to fully utilize the off-chip memory bandwidth and prefetching
techniques to hide the off-chip memory access latency. An overview of these memory customiza-
tion techniques is illustrated in Figure 4.

2.2.1 On-chip Buffer Optimization. Unlike general-purpose processors that have a fixed and
pre-designed multi-level cache system, FPGAs provide a fully customizable on-chip memory hi-
erarchy that can harvest the bandwidth of a massive amount of distributed registers, LUT RAMs,
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block RAMs (BRAMs), and ultra RAMs (URAMs). One of the most common and effective op-
timizations is to customize the on-chip buffers based on the application-specific memory access
behavior. The FPGA programmers may use different types of reuse buffers such as (1) shift registers,
line buffer, and window buffer that are predefined by HLS vendors [259], and (2) user-customized
buffer structures. For both vendor-provided and user-customized reuse buffers, programmers often
need to perform various loop transformations.

To minimize the required on-chip memory usage, an important technique is to apply loop tiling
and carefully select the right tile size to balance the computation and memory access with the
minimum buffer size. Loop fusion can also be leveraged to reuse one buffer for multiple loops.
Besides these commonly used loop transformations, several accelerator-specific optimizations can
also be applied. For example, one can use shift register, line buffer, and/or window buffer to avoid
duplicate buffers required by multiple compute operations. The line buffer and/or window buffer
is a more generalized version of a shift register, where it buffers just enough elements on-chip
for data reuse as required by the computing engine and it shifts at every new iteration/cycle. As
a result, only a minimum amount of new data has to be read from the off-chip memory into the
buffer every clock cycle. One can also use small streaming FIFOs (first in, first out) to dataflow
between multiple computing engines and avoid large on-chip buffers, which we discuss in more
detail in Section 2.2.3.

Another unique optimization for FPGA accelerators is to fully utilize the heterogeneous memory
resources to increase parallel on-chip data accesses so that the compute units are not idling due
to lack of data, namely, higher compute utilization in Equation (1). Such on-chip data are typically
large and require distributed BRAMs and URAMs, which are composed of hundreds to thousands
of dual-port SRAM banks. Each physical memory port allows up to one read or one write—with no
more than 36 bits for BRAM and no more than 72 bits for URAM—in one cycle. To enable parallel
on-chip data access, the key is to apply the memory banking optimization in HLS to partition a
large on-chip buffer into multiple small buffers that can be mapped onto multiple BRAM or URAM
banks. When each data item has fewer than 36 bits for BRAM or 72 bits for URAM, on-chip memory

coalescing can be further applied to stack partitioned smaller arrays to increase the port access
bitwidth (or word width) of the BRAM and URAM banks.

Several FPGA HLS tools often provide directives for users to specify such array partitioning and
reshaping to realize these optimizations [122, 259]. For example, Xilinx Vivado HLS [259] provides
pragmas for users to partition an array at multiple dimensions, in a block, cyclic, or complete fash-
ion. Recent years have also seen an active body of research on automatic array partitioning. For
array accesses with affine indices based on the loop indices, several studies [48, 55, 250, 251] find
that polyhedral compiler analyses can statically find array partitioning solutions to avoid on-chip
memory bank conflicts and automate the partitioning process. In general, the polyhedral compila-
tion is shown to be effective in co-optimizing the loop pipelining, parallelization, data reuse, and
array partitioning together given a polyhedral program [207, 283]. For stencil applications, prior ef-
forts have demonstrated success with polyhedral analyses [35, 56], where they can find the optimal
reuse buffer setting and partition the buffer in a way to minimize both off-chip memory accesses
and the on-chip buffer size. For non-affine programs, a few studies have taken a profiling-driven
approach to automatically partition the arrays with trace-based address mining [32, 282].

2.2.2 On-chip Cache Optimization. Most of the special-purpose accelerators target applications
with regular memory accesses using the aforementioned on-chip buffering optimizations. On-chip
caching provides another attractive alternative to accelerate applications with memory access pat-
terns that are hard to predict statically; it also eliminates the tedious programming effort to explic-
itly manage the on-chip buffering.
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As one of the early studies, the work in Reference [38] evaluates the multi-port L1 cache design
for parallel accelerators and finds the performance highly depends on the cache architecture and in-
terface. LEAP-scratchpad [4] is another early effort to provide multi-level cache support for FPGA
accelerators. It abstracts away the memory system from accelerator designers. Another effort sim-
ilar to (but different from) the cache abstraction is the connected RAM (CoRAM) approach [47].
CoRAM virtualizes a shared, scalable, and portable buffer-based memory architecture for the com-
puting engines, which naturally comes at the cost of performance and resource overhead.

On several FPGA SoC devices from Intel and Xilinx, a shared coherent cache is available between
the hardened ARM CPU and the FPGA accelerators [123, 260]. For datacenter FPGAs, efforts such
as Intel Xeon-FPGA multi-chip package and IBM CAPI also provide coherent shared cache memory
support for Xeon/PowerPC CPUs and FPGAs. A quantitative evaluation of modern CPU-FPGA
platforms with and without coherency support can be found in References [43, 44]. However, such
cache designs are shared by the CPU and FPGA; there are no practically available, dedicated on-
chip cache for the FPGA accelerators themselves yet. It is a potential area for more research.

2.2.3 Streaming Optimization. Besides on-chip buffering and caching optimizations, a unique
optimization for FPGA accelerators is streaming, which is high-performance and resource-efficient
as it helps minimize both off- and on-chip memory accesses. To enable streaming, the data access
pattern needs to be in a strict sequential order, with each data item read/written only once (plus
read and write cannot be mixed). If there are data reuse opportunities, then the streaming opti-
mization needs to be combined with the aforementioned buffering and/or caching optimizations.
HLS vendors typically provide predefined data types and structures, as well as directives, for users
to specify streaming access [122, 259].

Streaming optimizations have been widely used in image/video processing and machine learn-
ing applications. It is also crucial for network processing applications [258] to directly stream
the data from the network interface controller (NIC). For example, the P4 HLS programming
language [258] is developed to enable fast and efficient network processing with streaming sup-
port. More recently, both Xilinx and Intel provide support for direct host-to-accelerator streaming
and accelerator-to-accelerator streaming to bypass the off-chip memory and on-chip memory ac-
cess [122, 259]. Some initial efforts have attempted to provide compiler support to identify and
automate the kernel-to-kernel streaming for Intel OpenCL programs on FPGAs [129, 160].

2.2.4 On-chip Communication Networks. Building an efficient on-chip communication network
is also important for minimizing the overhead of accessing off- and on-chip memories. Network-

on-chip (NoC) is a popular option in this regard as it can further ease the routing and improve the
operating frequency of the FPGA accelerators. One of the early survey papers for FPGA NoC [2]
compares different hard, soft, and mixed NoC approaches, demonstrates the effectiveness of NoCs
and points out the need for hard NoCs. Indeed, the recent Xilinx Versal architecture has included a
hardened NoC [231]. The Hoplite series [89, 134, 135, 252] have explored various optimizations for
soft overlay NoCs on FPGAs to minimize its resource overhead, improve deflection and priority-
aware routing, and provide stall-free buffers. Several studies [31, 126, 279] also integrate soft NoC
generation for HLS accelerators. We refer the interested readers to these papers for more details.
The FPGA products with a hard NoC will trigger more research in the programming tool support to
efficiently place-and-route computing elements on FPGAs and effectively leverage the high-speed
NoC.

2.2.5 Off-chip Memory Optimization. After reviewing the aforementioned optimizations that
aim to reduce the off-chip data transfers, we further discuss how to optimize the essential off-chip
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memory accesses that cannot be avoided easily. Here, we mainly focus on the direct memory

access (DMA) from a DDR or high-bandwidth memory (HBM). For the communication opti-
mization between the host program and the FPGA accelerators, we refer the interested readers
to References [43, 44] for more details.

There are two major types of off-chip memory optimizations. The first type attempts to hide
the off-chip memory access latency from the compute engines. One of the common techniques is
to use the double (or ping-pong) buffer technique [50, 53], which decouples the memory access
(read or write) from execution via coarse-grained pipelining. Several HLS tools have automated
the generation of the double buffers. Another optimization is to prefetch the data to the on-chip
buffer/cache [29, 104].

The second type of optimization aims to fully utilize the off-chip memory bandwidth (BW),
which is nontrivial for FPGAs. A recent study in Reference [167] characterizes the off-chip DRAM
and HBM bandwidth for HLS programs under a comprehensive set of factors, including (1) the
number of concurrent memory access ports, (2) the data width of each port, (3) the maximum burst
access length for each port, and (4) the size of consecutive data accesses. To fully utilize the off-chip
memory bandwidth, programmers have to carefully tune these parameters based on the insights
summarized in Reference [167]. Some common optimizations include memory bursting to increase
the size of consecutive data access and the off-chip memory coalescing to increase the data access
bitwidth. The Falcon Merlin compiler [54, 60] has partially automated some of these optimizations.
The recent HBM Connect work [39] further proposes a fully customized HBM crossbar to better
utilize HBM bandwidth.

2.3 Custom Data Representations

Exploiting custom data representation is a vital optimization to achieve efficient hardware acceler-
ation on FPGAs. In contrast to CPUs/GPUs, which employ arithmetic units with a fixed bitwidth,
FPGAs allow programmers to use customized numeric types with the precision tailored for the
given application. When properly leveraged, such flexibility can lead to substantially improved
efficiency in both custom compute engines and the custom memory hierarchy. In this section, we
discuss two major aspects of custom data representations: (1) parameterized numeric types and (2)
automatic bitwidth analysis and optimization techniques.

Parameterized Numeric Types—Most FPGA HLS tools support arbitrary-precision integer
and fixed-point data types. For example, Xilinx Vivado HLS provides ap_(u)int and ap_(u)fixed
classes in C++ [259], while Intel HLS compiler uses ac_(u)int and ac_(u)fixed [122], which were
originally developed by Mentor.

Using arbitrary-precision integer types, multiple low-bitwidth data elements can be packed to-
gether into a wide bit vector without increasing the footprint on the main memory. The packed
data can then be read/written in a single memory transaction, which greatly improves the band-
width utilization and the overall operational intensity of the accelerator. In addition, operations
with reduced bitwidth require fewer resources, and thus more PEs can potentially be allocated on
the same FPGA device to increase hardware parallelism. As a result, the compute roof is further
lifted up, as illustrated in Figure 1. For some applications, one can pack hundreds or thousands of
bits into a single integer and perform bitwise operations very efficiently using the distributed LUTs
and registers on the FPGA fabric. One example is calculating the hamming distance between two
wide binary vectors via bitwise XORs. This kernel is used in many domains such as telecommuni-
cation, cryptography, and machine learning (e.g., binary neural networks [90, 103, 157, 262, 273],
hyper-dimensional computing [119, 120, 215]).
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Parameterized fixed-point types are also extensively used in FPGA design [99, 171, 227]. Fixed-
point values are essentially integers with a predetermined position for the binary point. Their
range is determined by the number of bits to the left of the binary point, while the precision de-
pends on those to the right of it. Unlike floating-point units, fixed-point arithmetic units do not
require expensive logic to manipulate the mantissa and exponent through rounding and normal-
ization. Hence, on an FPGA, fixed-point operations typically have a shorter latency and consume
much fewer resources than their float-point counterparts.

In some cases, fixed-point types may cause nontrivial accuracy degradation if the represented
data have a wide dynamic range. Hence, efficient floating-point computation is desired. To this
end, some recent FPGA devices (e.g., Intel Arria 10) offer hardened floating-point units (FPU),
which obviate the need to perform the aggressive fixed-point conversion for an accuracy-sensitive
application. Besides relying on FPUs that are strictly compliant with the IEEE 754 standard, the
FPGA programmers can also leverage several existing libraries and tools that generate custom
FPUs with reduced bitwidth [9, 127, 248]. For instance, FloPoCo is an open-source C++ framework
that can generate customized FPUs in synthesizable VHDL [75].

There is an active line of research that explores new floating-point formats to accelerate
machine learning workloads. Brain floating-point (bfloat) (originally proposed by Google) [246]
is a truncated version of the IEEE single-precision floating-point format, which is now supported
by the Intel Agilex FPGAs [121]. In addition, multiple recent efforts have implemented Posit
arithmetic operators on FPGAs [25, 228]. Most recently, Microsoft has proposed MSFP [74], which
is a form of the block floating-point format, where the data in an entire tensor block share a
single exponent. Hardened MSFP units have been added to the latest Intel Stratix 10 NX
FPGAs [181].

Automatic Bitwidth Optimization—For an FPGA accelerator, the bitwidth settings of the
numeric types can be a major determinant of its resource usage, the achievable frequency, and
hence the throughput. It often requires a nontrivial amount of manual effort to quantize floating-
point values into fixed-point types with the appropriate bitwidth. Hence, there has been a large
body of research that attempts to automate the float-to-fixed conversion process. With the existing
approaches, range analysis is first performed (typically by a compiler analysis pass or a profiler) to
obtain the minimum and maximum values of each variable in a given application. Note that such
range analysis is also useful for reducing the bitwidth of the integer values. Afterward, bitwidth

allocation is carried out to quantize or downsize the variables to a certain bitwidth. Finally, the
resulting accuracy and other performance/area metrics need to be evaluated through estimation
or simulation.

There are two popular methods to perform range analysis. The first method is to statically an-
alyze a program that exploits the information on compile-time constants (e.g., loop bounds) and
additional user-provided hints (often through pragmas or attributes) [13, 14, 136, 144, 195, 240].
The second one is to determine the input-dependent value ranges at run time [95, 146]. Static anal-
ysis often relies on interval arithmetic [109] and affine arithmetic [76] to infer the bound of each
variable. In contrast, dynamic analysis can achieve additional reductions in bitwidth, although it
may also introduce errors when the input samples do not cover some of the outliers. There are also
hybrid approaches that attempt to combine compile- and run-time methods. For instance, Klimovic
and Anderson propose to first perform static analysis according to the common-case inputs sug-
gested by the users while leveraging a run-time mechanism to fall back to software execution
when outliers occur [146].

For bitwidth allocation, prior arts mostly adopt methods such as simulated annealing and sat-
isfiability modulo theory [136, 144, 153, 195, 240]. It is worth noting that both range analysis and
bitwidth allocation are computationally hard problems and can be very time consuming to solve.
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Fig. 5. Step-by-step performance breakdown of our Caffeine FPGA accelerator [271]—Here, we accelerate

a VGG16 CNN model using major HLS optimization techniques discussed in Sections 2.1–2.3; the default

data type is 32-bit floating-point before we apply the 8-bit fixed-point optimization and FPGA platform is a

medium-size Alpha Data PCIe-7v3 FPGA board [271].

To address this challenge, Kapre and Ye propose a GPU-accelerated tool flow to automate and
speed up the bitwidth optimization process for the FPGA-targeted HLS designs [136].

2.4 Case Study on a CNN Accelerator

To demonstrate the performance impact of the hardware customization techniques discussed in
Section 2, we perform a case study on the acceleration of deep convolutional neural networks

(CNNs). This study is based on the Caffeine FPGA accelerator [271] for the VGG16 convolution
layer using Xilinx Vivado HLS. Here, we mainly focus on demonstrating the performance impact of
the aforementioned common customizations, including (1) on-chip buffering (both reuse improve-
ment and banking) of the weights, input and output feature maps, (2) fine-grained pipeline and
parallelism of the matrix multiplication (denoted as FG-pipeline), (3) coarse-grained parallelism to
duplicate the pipeline (denoted as CG-parallelism), (4) ping-pong buffer to hide the off-chip access
latency (denoted as Ping-Pong-pipe), (5) off-chip memory bandwidth optimization using bursting
and coalescing (denoted as off-chip-BW-opt), and finally (6) 8-bit custom precision to quantize the
convolutional layer. The target hardware platform is a medium-size Alpha Data PCIe-7v3 FPGA
board. We refer the interested readers to the original Caffeine paper [271] for a more detailed
accelerator design and experimental setup.

Figure 5 presents the step-by-step performance breakdown of those optimizations. Without any
optimizations, the naïve HLS code is hundreds of times slower than the CPU version. In particular,
on-chip buffering is the key technique that allows the custom compute engines to have sufficient
data. It brings the FPGA design closer to the CPU performance. Note that the buffering result
presented here actually includes some of the fine-grained pipeline optimizations, since Xilinx HLS
tool automatically pipelines the innermost loops. With optimized fine-grained parallelism, the
design starts to achieve a 2.4× speedup over the CPU. By further exploring the coarse-grained
parallelism, it achieves another 4.8× speedup. Double buffering achieves another 1.9× speedup
while off-chip memory bandwidth optimization provides an additional 1.5× speedup. Using custom
data representations with 8-bit fixed-point types boosts the accelerator performance by another
14.6× speedup.
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3 REPRESENTATIVE PROGRAMMING ABSTRACTIONS AND COMPILERS

There is a wide spectrum of programming models and compilers for FPGAs, such as HLS, poly-
hedral compilers, domain-specific languages, and new accelerator design languages. Due to the
large body of existing work, we can only survey a (small) subset of the representative and more
recent efforts. When describing a language/compiler, we focus on its productive features (e.g.,
metaprogramming, parametric types), performance features (e.g., supported hardware customiza-
tions), generality, and portability across FPGAs and other hardware targets.

3.1 High-level Synthesis (HLS)

Compared with HDL, HLS is a jump in productivity of programming FPGAs, at some reason-
able cost of performance. HLS tools provide programmers high-level abstractions and derive
efficient RTL from them, saving programmers from extensive hand-coding and tuning using
low-level HDLs [57]. Consequently, HLS tools have been increasingly deployed for FPGA-based
accelerations.

There is a large body of HLS tools. Below, we briefly review them from the aspects of input
languages, programming models, and compiler transformations. For more comprehensive details
on HLS, one may read surveys specifically on this topic [57, 73, 191, 193]. From the perspective of
input languages, there are HLS tools based on C/C++ and other languages. From the perspective
of programming models, HLS tools can be classified as control- or data-flow. From the perspective
of compiler transformations, HLS tools can also be classified as purely pragma-driven or automatic
polyhedral compilation.

C-based and Non-C-based HLS—State-of-the-art HLS compilers from major FPGA vendors
allow a computation for acceleration to be described in C/C++, which is then synthesized into
an FPGA accelerator either in the form of RTL or directly in bitstream by invoking downstream
CAD tools. Representative commercial tools include Intel OpenCL SDK [66], Intel HLS [122], Intel
OneAPI [124], Xilinx triSYCL [140], Microchip LegUp [23, 179], Mentor Catapult HLS [178], Ca-
dence Stratus HLS [19], Bambu [204], GAUT [64], and Xilinx Vivado/Vitis HLS [57, 259]. The
C-based HLS languages and compilers are easily accessible to programmers who are familiar
with CPU programming. The same design can execute on both CPUs and FPGAs, and the HLS
tools further provide basic performance portability across different target FPGA devices (from
the same vendor). However, achieving high-performance with HLS requires nontrivial hardware
knowledge and is very different from the conventional performance tuning process of CPU soft-
ware programming. Programmers typically need to apply many vendor-specific pragmas that di-
rect an HLS tool to generate the desired accelerator architecture. Also, programmers often have to
significantly restructure their code to manually implement a number of customizations described
in Section 2.

As FPGAs become increasingly common, FPGAs have also been added as a target of other pop-
ular languages, including Python and Java. These languages generate either C-based HLS code or
HDL code. For example, Hot & Spicy [225] translates Python code, which is written in a subset of
Python syntax and annotated with types and pragmas, into synthesizable Xilinx Vivado HLS code;
Synthesijer [232] maps Java into VHDL and Verilog, while Juniper [96, 133] maps Java to Xilinx
Vivado HLS code.

Control- and Data-flow HLS—Mainstream HLS tools are based on control-flow (i.e., impera-
tive) languages. In an untimed sequential program, the portion to be accelerated can be synthesized
into fully timed HDL modules realizing the same functionality on FPGAs. Often, programmers can
add pragmas/annotations in the accelerated portion to expose parallelism. HLS tools fall into this
category include Xilinx Vivado/Vitis HLS [57, 259], Intel OpenCL SDK [66], Microchip LegUp [179],
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Mentor Catapult HLS [178], Intel oneAPI [124], Xilinx triSYCL [140], Bambu [204], Cadence Stratus
HLS [19], and GAUT [64].

FPGA is naturally fit for dataflow execution due to its massive distributed hardware resources.
A dataflow HLS program expresses a dataflow graph. For example, Maxeler [174], CAPH [218],
and OpenDF [11] use meta-languages (e.g., CAL, MaxJ) to define a graph structure, and synthesize
the nodes into individual RTL modules that are connected with communication channels. Other
dataflow HLS tools (e.g., FAST-LARA [97] and OXiGen [203]) provide a high-level abstraction (e.g.,
C/C++ structs) to represent the dataflow structure.

Pragma-Driven and Automatic Polyhedral Compilation—Existing HLS tools commonly
allow programmers to manually insert pragmas that direct the compiler to transform loops for
performance. Recent years have also seen an active body of research on FPGA HLS that builds
on polyhedral compiler frameworks to perform many useful loop transformations in a fully auto-
mated fashion [8, 58, 59, 161, 188, 207, 245, 283].

Polyhedral compilation is a powerful approach to analyzing and optimizing loop nests that are
static control parts (SCoP) [10, 15, 49, 98, 161, 163]. SCoP is a subclass of general loop nests
with constant strides, affine bounds, and statically predictable conditionals that are affine inequal-
ities of the associated loop iterators. Such a restricted form of loop nests is commonly seen in a
broad range of numerical computations such as dense linear or tensor algebra, image processing,
and deep learning algorithms. A polyhedral compiler uses parametric polyhedra as an intermedi-

ate representation (IR). The polyhedra represents (either perfectly or imperfectly) nested loops
and their data dependencies. Such an IR enables many useful dataflow analyses and effective com-
positions of a sequence of loop transformations. Polyhedral analyses and code transformations
have been extensively used in optimizing compilers targeting CPUs and GPUs, especially for high-
performance computing.

For FPGA-targeted HLS, loop pipelining is a critical performance optimization but usually is ap-
plicable only to loops with statically known dependencies. Liu et al. [161] extend loop pipelining so
that uncertain dependencies (i.e., parameterized by an undetermined variable) and non-uniform
dependencies (i.e., dependence distance varying between iterations) can also be handled. They
build a polyhedral model to characterize loop-carried dependencies, statically schedule the loops
without the dependencies, and insert a controller to dynamically respect the dependencies during
execution, if needed. Pouchet et al. [207] leverage the expressiveness of polyhedral compilation to
optimize critical resources, including off-chip memory bandwidth and on-chip scratchpad capacity,
exploit data reuse, and promote memory references to on-chip buffers automatically for minimiz-
ing communication volumes. Zuo et al. [283] map optimized polyhedral IR to C for the purpose of
HLS and FPGA so that FPGA resources are minimized without a performance penalty. PolySA/Au-
toSA [58, 245] automatically builds systolic arrays from a plain C/C++ code without sophisticated
loop annotations or manual code transformations. The framework compiles the code into polyhe-
dral IR and explores various space mapping and time schedules corresponding to different systolic
array configurations.

3.2 Domain-specific Languages (DSLs)

Using DSLs can simplify the work of both programmers and compilers to identify and exploit op-
portunities for advanced customizations that are commonly used in a specific application domain.
For this reason, it is not surprising to see many domain- or application-specific languages emerg-
ing in the past several years either for FPGAs (and maybe also ASICs) [79, 137, 182, 192, 196, 230]
or re-purposed from CPUs or GPUs to FPGAs [79, 137, 196, 197]. These languages provide a lim-
ited number of, but optimized, functions/operators specific to “hot” or important domains and
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applications (e.g., image processing, machine learning, network packet processing, software-
defined radios, and even controllers of FPGA systems).

The narrower focus of the application domains enables DSLs to provide high-level program-
ming interfaces for high productivity, and at the same time, very specialized implementations
for high performance. DSLs could be much more productive than HLS to express FPGA and
domain-specific customizations. Below, we briefly review a few domains with some representative
DSLs.

Linear Transform—A linear transform expressed as a matrix-vector multiplication (e.g.,[
y0
y1

]
=

[
1 1
1 −1

] [
x0
x1

]
for two-point discrete Fourier transform (DFT)) can have many differ-

ent algorithmic implementations. For example, DFT can have many fast versions such as Pease
fast Fourier transform (FFT), Cooley-Tukey FFT, mixed-radix FFT, and Bluestein FFT. Com-
plex algorithms can be composed of multiplication, permutation, Kronecker product, and so on,
of matrices representing linear transforms. Spiral [182] generates hardware for linear transforms
widely used in signal processing and other domains, such as discrete Fourier and cosine transforms.
Given a linear transform of a fixed size, Spiral chooses and expresses an algorithm as a formula,
rewrites the formula based on rules and user-provided hardware directives, and finally generates
synthesizable RTL. The hardware directives customize the mapping of the formula to hardware for
reusing hardware components. The latency, throughput, and area of the mapping can be estimated
quantitatively.

Image Processing—RIPL [230] defines a set of operations at the levels of pixels, window,
and image. These operations are compiled into dataflow actors, which are finite state machines.
The dataflow actors are lowered into CAL dataflow language [82] and then into Verilog. Dark-
room [107] is a functional language restricted to stencil operations on images and automatically
generates a schedule that is a pipeline of operations with minimum-sized line-buffers between
them. Rigel [108] extends Darkroom for generating multi-rate pipelines, where the pipeline stages
can fire with different rates. Hipacc [212] generates optimized OpenCL/CUDA code for image pro-
cessing kernels running on FPGAs/GPUs.

Many computing patterns in image and video processing can be concisely described as nested
loops in a declarative programming paradigm, as can be seen from several DSLs [107, 145, 177, 253].
Halide proposes decoupling an algorithm from a schedule for a compute [210]. Here the algorithm
is a declarative specification of the compute. The schedule then specifies how to optimize the
algorithm for performance. Programmers only specify what optimizations to do, while the actual
implementation of the optimizations is left to a compiler. In this way, both productivity and perfor-
mance can be achieved. Halide was originally only for CPUs and GPUs. Halide-HLS [208] extends
Halide to target FPGAs. It generates a high-throughput image processing pipeline with line buffers,
FIFOs, and also the glue code between the host and the FPGA accelerator.

Machine Learning—Many promising tools have emerged in this hot domain, such as TVM [27,
187], TABLA [172], DNNWeaver [221], DNNBuilder [272], Caffeine [271], and HLS4ML [79].
TVM [27] builds a deep learning compiler stack on top of Halide IR, supporting both CPUs and
GPUs. TVM programs can target FPGAs as a back end by using VTA, a programmable accelerator
that uses a RISC-like programming abstraction to describe tensor operations [187]. TABLA [172]
implements an accelerator template, uniform across a set of machine learning algorithms that are
based on stochastic gradient descent optimization. DNNWeaver [221] maps a Caffee [128] specifi-
cation to a dataflow graph of macroinstructions, schedules the instructions, and uses hand-written,
customizable templates to generate an accelerator. HLS4ML [79] translates neural network mod-
els learned by popular machine learning frameworks like Keras [139], PyTorch [201] and Tensor-
Flow [1] into Xilinx Vivado HLS code, which generates bitstreams to run on Xilinx FPGAs.
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Networking, Data Analytics, and Other Domains—P4FPGA framework [244] translates a
network packet processing algorithm written in the P4 language into BlueSpec System Verilog for
simulation and synthesis for FPGAs, and provides runtime support such as the communication
between the host and the synthesized accelerator. Xilinx SDNet [258] is another FPGA-targeting
framework for packet processing that supports the P4 language. Spark to FPGA Accelerator [265]
generates HLS C code from Apache Spark program written in Scala for big data applications. FSM-
Language [5] leverages Haskell to simplify the specification of finite state machines, which are
common in hardware design.

3.3 Emerging Trends and Accelerator Design Languages

Recent years have seen several trends in accelerator design languages. First, DSLs are becoming

increasingly generalized, mixing imperative and declarative paradigms and/or embedded in general

host languages. While DSLs offer many advantages in productivity and compilation for individual
application domains, more general-purpose language constructs are needed to (1) bridge the gaps
between popular domains, (2) provide programmers with greater control on important customiza-
tions, (3) and serve as a compilation target for multiple high-level DSLs. Along this direction, we
see new languages like DHDL, Spatial, and HeteroCL. DHDL [148] describes hardware with a set of
parameterizable architectural templates that capture locality, memory access, and parallel compute
patterns at multiple levels of nesting. DHDL is embedded in Scala and thus leverages Scala’s lan-
guage features and type system. Spatial [147] is a successor of DHDL, with more hardware-centric
abstractions. HeteroCL [150] is embedded in Python and blends declarative symbolic expressions
with imperative code.

Second, new programming models are providing more explicit controls to programmers for more

predictable behaviors of the generated accelerators. It has become a common practice for languages
to be designed with high-level types and parameterized constructs modeling reconfigurable hard-
ware components. These hardware components are typically implemented manually with high
performance and maybe parameterized for flexibility. Take several examples. Spatial [147] builds
on parallel patterns, which map to efficient hardware templates; reduction can be done in registers
or memory; programmers can build a custom memory hierarchy with at least three levels (DRAM,
SRAM, and register); data can be stored on-chip in specific resources like look-up tables and spe-
cialized structures like queues, stacks, and line buffers. HeteroCL [150] allows programmers to
customize memory (via creating a custom memory hierarchy through banking, reuse buffers, and
data streaming), compute (various loop transforms), and data types (bit-accurate types and quan-
tization); systolic arrays and stencils can be efficiently built/handled by leveraging PolySA/Au-
toSA [58, 245] and SODA [35]. Dahlia [192] resembles traditional C-based HLS, but enhances the
type system to prevent unsafe, simultaneous uses of the same hardware resource; with the type
system, programmers can explicitly enforce some of the unwritten rules only known by the HLS
experts (e.g., the unrolling factor should divide the banking factor of the arrays accessed inside
the loop to achieve the best performance-area trade-off). Aetherling [80] abstracts sequential or
parallel hardware modules into a set of data-parallel operators and features types for space se-
quence and time sequence that encode the parallelism and throughput of the hardware modules.
Well-typed operators can thus be composed into statically scheduled streaming circuits.

Third, separation of concerns becomes popular in language designs. Inspired by Halide [210], Het-
eroCL [150], and T2S [151, 213, 229] separate algorithm definition from hardware customization,
which leads to higher productivity. In the algorithm definition, HeteroCL allows both imperative
programming and declarative programming, making the language more general compared to other
DSLs such as Halide and TVM. For hardware customization, HeteroCL supports all three essential
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Fig. 6. Matrix-matrix multiplication in SuSy and the generated hardware architecture—SuSy adopts separa-

tion of concerns by decoupling temporal definition (L1–5) from spatial mapping (L7–21).

techniques described in Section 2. For custom data representations, HeteroCL supports arbitrary-
precision integers and fixed-point types. For custom compute engines, HeteroCL supports pipelin-
ing, unrolling, and several other loop transformations. For custom memory hierarchy, HeteroCL
supports several on-chip buffering optimizations such as memory banking and data reuse.

T2S is designed based on an observation that “no matter how complicated an implementation
is, every spatial piece of it must be realizing a part of the functionality of the original workload,
and they are communicating based on production-consumption relationship” [213]. Therefore, a
programmer could specify a temporal definition and a spatial mapping. The temporal definition
defines the original workload functionally, while the spatial mapping defines how to decompose
the functionality and map the decomposed pieces onto a spatial architecture. The specification
precisely controls a compiler to actually implement the loop and data transformations specified in
the mapping. So far, T2S focuses on expressing high-performance systolic arrays, which are often
the most efficient way for accelerating a workload on an FPGA. While previous studies focus on
how a systolic array computes, the input/output data paths are barely discussed. However, I/O is
often the most complicated part in a real-world implementation. T2S allows a full systolic system
to be built, including the core systolic array for a compute, other helper arrays for I/O data paths,
host pre- and post-processing, and host and FPGA communication. T2S has two implementations,
T2S-Tensor [229] and SuSy [151] for building asynchronous and synchronous arrays, respectively.
Figure 6 illustrates SuSy with matrix multiplication. SuSy expresses the temporal definition as uni-

form recurrence equations (UREs), creates PEs with a space-time transform, and connects the
PEs via shift registers. Note that UREs and space-time transformation are the theoretical founda-
tion of most systolic arrays.

4 CHALLENGES AND OPPORTUNITIES AHEAD

It is clear that the latest generation of FPGA-targeted compilers and programming languages
have made significant progress in providing broad language coverage and robust compilation
technology. As a result, FPGA programmers can now more productively implement various
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Fig. 7. Current flow to compile a high-level specification to a bitstream.

Fig. 8. Our vision to compile a high-level specification to a bitstream within minutes.

important hardware customization techniques to build an efficient accelerator with quality of

results (QoRs), in many cases, comparable to or better than manual RTL designs. Despite this
encouraging development, current FPGAs are not fully software programmable—at least not in
the conventional manner that works for microprocessors, even with the introduction of HLS.
Figure 7 depicts the current design flow to compile a high-level specification to a bitstream. At
each design stage of this flow, programmers need to analyze reports generated by the tools and
modify high-level specification of the design accordingly. This is an iterative and labor-intensive
process until design constraints are met. It may take hours or days to compile HLS-generated
RTL to a bitstream due to the slow physical design steps. Not surprisingly, software-inclined
developers often fail to appreciate the complexity involved in implementing new functionalities
on FPGA devices to achieve a high performance.

In light of the challenges with the current flow and recent advancements in FPGA technology
and other related fields, we are envisioning a new flow in Figure 8 that will enable much higher
productivity for both hardware designers and software programmers. It has the potential to com-
pile a high-level specification to a bitstream within minutes, and with significantly less manual
effort involved. In this new flow, we also believe domain-specific overlay architectures will play
an increasingly important role in providing a programming experience that resembles software
development. Furthermore, integration with the high-level software stack is included to increase
adoption of FPGAs by software programmers.
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The rest of this section discusses several remaining challenges with FPGA programming and
outlines the opportunities ahead. To be specific, we are touching upon five objectives: (1) quicker
physical design closure, (2) faster design space exploration, (3) higher hardware abstraction, (4)
higher software abstraction, and (5) easier debugging. In Section 4.1, we discuss accelerating the
physical design closure of an application-specific accelerator. In Section 4.2, we explore how to
further speed up design space exploration by means of various machine learning (ML) tech-
niques. In Section 4.3, we discuss the benefits and opportunities introduced by overlays, namely,
the soft domain-specific accelerators. In Section 4.4, we outline the requirements for further rais-
ing the software abstraction of the FPGA accelerators through tighter integration with high-level
software stack. Finally, in Section 4.5, we discuss the challenges and progresses made related to
debugging.

4.1 Quicker Physical Design Closure

Even though HLS offers high productivity for FPGA designers, RTL designs generated by the HLS
tools may be prone to placement-and-routing (PnR) issues and timing degradation during im-
plementation. Such deficiencies are aggregated by the long run time of the physical design stages.
It is vital to generate the bitstream of an accelerator within minutes, and we believe this can be
made possible with the integration of two strategies, respectively: (1) HLS designs should be floor-
planned and pipelined effectively through physical layout awareness; (2) time-consuming physical
design should be accelerated through design modularity and parallel PnR. There are a number of
studies implementing these strategies separately. However, we envision that the key to minute-
scale design closure is to integrate these two strategies into a flow as shown in Figure 8.

Physical design objectives are not directly addressed by HLS optimizations, and furthermore,
objectives of different design stages can be conflicting. Therefore, achieving design closure in an
efficient manner is only possible by making HLS optimizations aware of the physical layout. It
is essential to identify and resolve routing and timing issues prior to RTL instead of resorting to
the time-consuming physical design stages. In the minute-scale flow that we envision, ease and
acceleration in timing closure can be realized by means of three approaches: First, predictions on
HLS and physical design objectives are needed to guide DSE. Second, predictions on low-level
physical design metrics are back-annotated to high-level source code, making it easier for FPGA
programmers to locate and resolve potential congestion and timing issues early in the design flow.
Third, predictions on physical design objectives can be used to effectively floorplan and pipeline a
high-level design, facilitating frequency improvement and parallel compilation of physical design
stages. Some of these strategies have been separately addressed by prior work.

Recently, Zhao et al. use ML models to estimate routing congestion from HLS IR and back-
annotate this congestion information to high-level source code [276]. These back-annotations can
be used by HLS designers to resolve congestion and improve frequency. Another line of work
attempts to identify common communication and computation patterns that lead to timing degra-
dation and propose techniques to resolve them [61, 101]. Cong et al. leverage pipeline transfer con-
trollers on the datapaths where certain data broadcast patterns are detected [61]. Guo et al. identify
and resolve common data and control broadcast structures generated by HLS compilers [101] A
recent framework called AutoBridge [100] addresses timing degradation of large HLS-generated
designs on multi-die FPGA devices, which is caused by the difficulty in predicting interconnect
delay at the HLS level. AutoBridge floorplans a given dataflow design across multiple dies in a
coarse-grained manner, while die-crossing connections are pipelined to improve frequency. These
work show significant improvement in maximum frequency achieved.

The running time of placement and routing has been one of the major bottlenecks in FPGA
design. We envision that exploiting structural modularity of designs will be the key to speeding
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up the downstream flow, because modularity allows both parallelization and reuse of physical
design effort. An encouraging example is RapidRoute [162], which builds custom routers ex-
ploiting reuse and parallelism of communication structures. In the minute-scale flow that we
envision, floorplanning HLS designs facilitates parallel downstream compilation with recent
advancements in pre-implementation [152] and partial reconfiguration [256]. Partitions resulting
from HLS floorplanning can be implemented in parallel, while also optimized using distributed
autotuning frameworks such as LAMDA [239]. Resulting PnR solutions, which are referred to
as pre-implementations, can be combined together using a stitching methodology provided by
RapidWright [152] to construct the full design.

Many past efforts on fast PnR went into parallelizing the placement and routing algorithms
based on simulated annealing, leveraging multiple CPU cores [87, 93, 114, 168, 169, 242]. Another
line of work parallelizes analytic placement algorithms that have been shown to scale better to
large-scale designs [156, 202]. More recently, Lin et al. developed an open-source project called
DREAMPlace [158], which casts analytical placement of VLSI circuits to training a neural network,
leading to significant speedup with the use of deep learning toolkits. In order to parallelize routing
algorithms, a number of papers explore coarse-grained approaches where signals are assigned to
different cores for parallel processing [94, 111, 183, 222–224, 243], many of which are coupled with
parallel maze expansion for a single net.

Another strategy to speed up the PnR is realized with partial reconfiguration, where a design
is decomposed to enable separate compilation of leaf modules communicating through a packet-
switched network [200, 256]. Integral to these algorithmic advancements, in recent years, we are
also seeing advancements in open-source platforms that allow designers to build custom solutions
to keep up with the increasing design complexity and productivity demands [152, 189, 190].

4.2 Faster Design Space Exploration (DSE)

FPGA programmers need to explore a wide range of hardware customization options, while funda-
mental design objectives are area, latency, and power. Programmers can configure HLS directives
to guide the synthesis process in compliance with their design objectives. These directives con-
stitute a large and complex search space, which makes manual or exhaustive exploration highly
inefficient. Therefore, many methodologies have been proposed to perform efficient DSE in HLS
through a number of multi-objective optimization techniques.

Surrogate modeling is performed especially when objective function’s behavior is complex and
its evaluation is time-consuming [205]. Replacing costly evaluations with approximations lead to
faster DSE convergence, bringing about a trade-off between speed and accuracy that needs to be
calibrated carefully. Consequently, ML methods have been used as objective function estimators
in HLS to account for optimizations that take place in logic synthesis and physical design. Dai
et al. leverage ML models to narrow the gap between resource usage prediction in HLS and ac-
tual post-routing results [72]. Zhao et al. propose congestion prediction at the HLS level and map
congested regions to HLS IR operations [276]. Ustun et al. perform operation delay prediction
in HLS by leveraging emerging graph learning techniques, specifically graph neural networks

(GNNs) [238]. Makrani et al. leverage stacked regression ensemble models to predict optimal re-
source usage and maximum achievable frequency values of a given post-HLS design [173]. A num-
ber of papers leverage such surrogate modeling to speed up DSE. Kurek et al. model an objective
function with a Gaussian process and use an SVM classifier to estimate whether design constraints
are met [149]. Lo et al. propose a sequential model-based optimization technique in which Gauss-
ian process-based modeling of the objective function is enhanced with estimations provided by
the CAD tool at multiple design stages [164–166]. Mehrabi et al. also leverage a Gaussian process,
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but unlike prior work, they perform multi-objective Bayesian optimization targeting latency and
heterogeneous resource usage [176].

Another line of work builds analytical models to eliminate the need to wait for performance
results reported at the end of HLS toolflow during DSE. Zhong et al. propose a dynamic anal-
ysis method in which applications are profiled and dynamic data dependence graphs are con-
structed [280]. Dependence information is then used to predict performance accurately across
the search space of directive configuration. Zhao et al. propose a metric-guided DSE framework
where performance and resource models are constructed with dataflow graph analysis across a
wider range of directives [275]. Furthermore, leveraging prior knowledge to speed up convergence
has been applied to analytical models [85].

4.3 Raising Hardware Abstraction

The previous sections mostly focus on the application-specific hardware synthesis, such as HLS,
since building a fully application-customized accelerator can theoretically harness an FPGA’s peak
potential. However, the downsides of this approach are also evident—long compilation time and un-
predictable design closure. An alternative is to target an overlay, which refers to a virtual hardware
architecture that executes instructions and is “laid” on top of the physical FPGA fabric [17, 170, 264].
Overlays offer a more constrained configuration space, thus admitting faster compilation with bit-
stream reuse across applications from the same domain.

The idea of implementing customizable soft-core processors on FPGAs was initially introduced
in mid 1990s in References [125, 154] and revisited in References [63, 264], which are early exam-
ples of overlay. The concept of an FPGA overlay was later used in References [17, 143, 175]. Recent
overlay architectures specialize the reconfigurable fabric for specific computational patterns such
as vectorizable code [46, 219, 220, 266], GPU-like SIMT parallelism [6, 170], or key operators and
layer types for deep neural network [3, 88, 209]. Clearly, the recent development of overlay archi-
tectures represents a promising direction to enable true software-based programming on commer-
cial off-the-shelf FPGAs. Nevertheless, there remain several challenges and a host of new research
opportunities related to the compilation and synthesis for overlays.

First, building the domain-specific compiler for a new and evolving overlay can be a significant
engineering undertaking. Compared to CPUs/GPUs, the instruction set architecture (ISA) for
an overlay is typically simpler but often evolving more rapidly. Overlays need to scale in capa-
bility (e.g., PE datapath, off-chip memory interfaces) and size (e.g., PE counts, buffer capacities,
spanning a single or multiple FPGAs) to adapt to changes in application demands and cost re-
quirements. Therefore, an overlay compiler must be retargetable to a “moving target” ISA. Second,
most overlay architectures are currently implemented at RTL, and by hardware experts, with a
high development cost. Hence, they are often only available for hot domains or applications (e.g.,
deep learning these days [3, 27, 261]). Existing overlays might not necessarily match well with new
algorithms or workloads. Hence, there is also a need to enable software programmers, instead of
hardware experts, to quickly build an application-specific overlay on an FPGA, possibly leveraging
existing HLS compilers and a set of high-level customizable IPs.

4.4 Raising Software Abstraction

Tighter integration with the software stack, with an emphasis on system-level performance, is
also very important and often overlooked. Existing FPGA accelerators are typically packaged in
a vendor-specific format such as encrypted netlists, HDL modules, and HLS C/C++ functions, all
of which assume hardware-centric interfaces. Thus, nontrivial non-recurring engineering cost is
incurred almost every time a new FPGA accelerator gets integrated into the software stack. To
enable mainstream adoption of FPGAs in the software community, it is essential to support the
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automatic compilation from high-level user-facing programming interfaces such as Java/Scala for
big data applications and Python-based DSLs (e.g., PyTorch, TensorFlow) for AI experts and data
scientists. The end goal is to provide programming abstractions and tools that empower users with
software-only backgrounds to productively use FPGAs near their capability.

From end users’ standpoint, what really matters is to achieve high end-to-end performance at
the system level, instead of just optimizing one accelerator. Hence, co-optimizations are needed
among multiple accelerators, and between accelerators and the processor where software is run-
ning. Some recent efforts such as the Blaze system [33, 115] have studied the efficient programming
and runtime support to integrate pre-synthesized FPGA accelerators into the widely used big data
computing framework Apache Spark, which is based on Java Virtual Machine. Efficient CPU and
FPGA co-optimization has also been considered in Reference [51].

Another important direction is to leverage virtualization so FPGA accelerators can be deployed
as easily as traditional software services. Achieving this goal requires the development of new
runtime and architectural support for efficient dynamic partial reconfiguration (DPR). More
concretely, efficient coarse-grained abstractions of heterogeneous FPGA resources (such as virtual
tiles) are necessary to speed up DPR and enable virtualization of the accelerators that may scale in
size. In addition, new software runtimes are needed to reconfigure the FPGA fabric on demand and
perform intelligent resource management and scheduling based on the varying workload require-
ments. Several recent attempts have shown promising results on virtualizing the FPGA fabric, such
as AmorphOS [141] and VITAL [269], while much more work is needed before FPGA virtualization
becomes readily usable for the masses.

4.5 Easier Debugging

One of the biggest challenges for software-defined hardware accelerators is what you see in the

software program is not necessarily what you get in the hardware. Therefore, effective debugging
support for HLS—handling both the correctness- and performance-related issues—is essential to
advance FPGA programming. Specifically, a good HLS debugging tool for software-defined hard-
ware accelerators needs to achieve the following goals. First, it needs to maintain the software to
hardware mapping so that the debugging is observable at the original software code level. Second,
it needs to be flexible so that users can choose to observe any part of the program at any given
time. Third, it needs to be fast for debugging complex designs, since many bugs are only triggered
at certain execution stages of the program or at certain combinations of the inputs. Fourth, it needs
to support both correctness and performance debugging, since writing a correct program is just
the first step and the ultimate goal of hardware acceleration is to achieve high performance. Fifth,
it needs a user-friendly interface similar to software debuggers like GNU debugger.

While algorithm-level bugs can be detected and fixed using software simulation, the challenges
lay in debugging the generated hardware design, which often requires hardware simulation at
RTL or on-board debugging (also known as in-system debugging). Unfortunately, today’s RTL
simulation tools are often too slow to debug practical designs with a large amount of input data.
Therefore, current approaches often favor on-board debugging, which can be done by inserting
printf [122, 259] and/or assertions [65, 105, 236], or by recording traces during execution [20,
83, 86, 92, 110, 186]. The printf- and assertion-based approaches are not flexible enough as they
require programmers to manually insert code wherever they want to observe the program variable
changes. Moreover, programmers must rebuild the bitstream, which is time consuming.

Most recent efforts focus on the trace-based approach. Currently, commercial tools like Xilinx
ChipScope [257] and Intel SignalTap require users to select the monitoring signals in the RTL
signal list, which is hard for users to observe in the original software code level. To address
this deficiency, recent academic studies in References [20, 83, 86, 91, 92, 110, 184–186, 206] try
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to maintain cross-mapping between the software variables and the corresponding registers/sig-
nals in hardware so that users can select variables at the software level. Studies in References
[18, 20, 83, 92, 110, 206] also provide a software-like debugging interface such that users can insert
breakpoints, step through the code and inspect variable values. One issue for the trace-based ap-
proach is that the trace buffers are limited by the on-chip RAM size, which limits the time period
and the number of variables that can be traced in a single build. There are multiple techniques
explored to address this issue. For example, the work in Reference [91] only stores values that
have changed; the work in Reference [92] restructures variable values from other variables offline;
and the work in Reference [86] compresses the control-flow trace of HLS programs. Overlays for
debugging have also been proposed in References [83, 92, 110] to avoid repeated compilation and
enable dynamic tracing of more variables.

Besides the aforementioned correctness debugging, there are also recent studies on the sup-
port of performance debugging to help programmers identify the performance bottlenecks
[40–42, 45, 65, 216, 241]. Clearly, there is a great need for more research in the debugging tools that
are observable at the software level, flexible, fast, and support both correctness and performance
debugging. Significantly faster hardware simulation techniques are needed. The trace-based on-
board debugging built with overlay techniques looks promising. Research automating functional
and performance debugging also deserves more attention.

5 CONCLUSION

This article surveys the recent programming flows as well as the essential compilation and syn-
thesis techniques that enable software-defined FPGA acceleration. We particularly focus on the
customization techniques that are unique to FPGA accelerator designs, instead of those code opti-
mizations well-established for CPU or GPU targets. In addition, we highlight existing challenges
and future opportunities of FPGA-based computing including faster design closure, higher hard-
ware/software abstraction, and easier debugging. We envision that this article can serve as a useful
guide for both academic researchers and industry practitioners, who are interested in developing
high-performance FPGA accelerators using high-level software programs.
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