
SERI: High-Throughput Streaming Acceleration of Electron Repulsion
Integral Computation in Quantum Chemistry using HBM-based FPGAs

Philip Stachura∗, Guanyu Li∗, Xin Wu†‡, Christian Plessl†‡, Zhenman Fang∗
∗Simon Fraser University, Burnaby, BC, Canada †Paderborn Center for Parallel Computing,

‡Department of Computer Science, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany
Email: {philip stachura, guanyu li, zhenman}@sfu.ca, {xin.wu, christian.plessl}@uni-paderborn.de

Abstract—The computation of electron repulsion integrals
(ERIs) is a key component for quantum chemical methods. The
intensive computation and bandwidth demand for ERI evaluation
presents a significant challenge for quantum-mechanics-based
atomistic simulations with hybrid density functional theory: due
to the tens of trillions of ERI computations in each time step,
practical applications are usually limited to thousands of atoms.

In this work, we propose SERI, a high-throughput streaming
accelerator for ERI computation on HBM-based FPGAs. In con-
trast to prior buffer-based designs, SERI proposes a novel stream-
ing architecture to address the on-chip buffer limitation and
the floorplanning challenge, and leverages the high-bandwidth
memory to overcome the bandwidth bottleneck in prior designs.
Moreover, to meet the varying computation, bandwidth, and
floorplanning requirements between the 55 canonical quartet
classes in ERI calculation, we design an automation tool, together
with an accurate performance model, to automatically customize
the architecture and floorplanning strategy for each canonical
quartet class to maximize their throughput. Our performance
evaluation on the AMD/Xilinx Alveo U280 FPGA board shows
that, SERI achieves an average speedup of 9.80x over the previous
best-performing FPGA design, a 3.21x speedup over a 64-core
AMD EPYC 7713 CPU, and a 15.64x speedup over an Nvidia A40
GPU. It reaches a peak throughput of 23.8 GERIS (109 ERIs per
second) on one Alveo U280 FPGA. SERI will be released soon
at https://github.com/SFU-HiAccel/SERI.

I. INTRODUCTION

Quantum chemical methods [1], [2] determine the accu-
racy and predictive power of atomistic simulations based on
quantum mechanics, known as ab initio molecular dynamics
(AIMD) [3]. The hybrid density functional theory (DFT) [4]
based AIMD can accurately model reactive and complex sys-
tems, which are generally inaccessible by means of classical
molecular dynamics [5]. The electron repulsion integral (ERI)
describes the repulsion between the densities of two electrons
and the computational complexity may scale as O(n4) [1],
where n is the number of electrons in the system. Moreover,
tens of trillions of ERIs may have to be computed in each time
step in practical simulations. Thus, the ERI computations limit
the hybrid DFT-based AIMD simulations, even parallelized on
supercomputers with 12000 CPU cores, to systems about one
thousand atoms [6], [7].

Motivated by many applications of the AIMD simulation,
dedicated libraries for the ERI computations are developed
on CPUs [8]–[12], GPUs [13]–[18], and FPGAs [19], [20]
for high-performance computing. Because of intrinsic data de-
pendencies induced by multi-dimensional recurrence relations
(RRs) and complex loop structures for different combinations
of quantum angular momenta, the ERI computations on CPUs
and GPUs suffer from inefficient vectorization [10] and under-
utilized parallelization [17]. In contrast, the computation and

memory system on FPGAs can be customized to match the
diverse data layouts and loop structures, which are essential for
performant ERI computations. For large ERI classes, the latest
best performing FPGA design [20] exhibits better performance
and energy efficiency than the libint library [8], which is
widely deployed for the ERI computations in many atomistic
simulation packages [21], [22]. However, its throughput [20] is
bound by 1) insufficient off-chip memory bandwidth for large
quartet classes, 2) limited parallelism for small quartet classes,
and 3) the overhead in its buffer-based dataflow design.

To address the off-chip bandwidth limitation in computing
large ERI classes, we decide to leverage the high-bandwidth
memory (HBM) on modern datacenter FPGAs, more specifi-
cally, the AMD/Xilinx Alveo U280 FPGA board. However, the
distinct characteristics of Alveo FPGAs compared to that of
Intel/Altera Stratix 10 FPGAs used in the prior best performing
study [20] introduce new challenges for our accelerator design:
1) there are fewer on-chip memory blocks, which makes
the prior buffer-based design [20] infeasible on Alveo U280;
2) there is less floating-point computing capability in DSPs,
which requires a more efficient accelerator architecture; and
3) Alveo FPGAs use a multi-die design, which is more
challenging for the timing closure due to die crossings.

In this paper, we present SERI, a high-throughput stream-
ing accelerator for ERI computation on HBM-based FPGAs.
The streaming architecture has the following benefits: 1) it
significantly reduces the on-chip memory usage; 2) it is more
friendly for floorplanning to achieve a better timing closure;
and 3) it avoids the multi-cycle overhead in buffer-based
dataflows to begin each iteration. To realize the streaming
architecture, we segment the ERI computation into multiple
stages and implement each stage as a separate FPGA kernel.
The intermediates are streamed between the computation ker-
nels using kernel-to-kernel streaming. Moreover, to address
different buffer partition requirements inside two neighboring
kernels—i.e., recurrence relations and Gaussian quadrature
stages in ERI computation—we introduce a novel buffer
permutation kernel between them. This kernel takes care of the
buffer layout change without affecting the dataflow throughput
and avoids excessive buffer partitioning, which would require
a huge number of on-chip memory banks; and it is connected
with the original two neighboring kernels using streams.

To implement a more efficient streaming architecture with
lower DSP computing capabilities, we apply two major opti-
mizations. First, we scale down the parallelism factor in non-
bottlenecking dataflow stages to save DSP usage. Second, we
play a balance between DSPs and LUTs to achieve a higher
computation throughput. Moreover, for small ERI classes with

small loop trip counts, we further explore the parallelism
among the inputs by duplicating the kernels to achieve a
higher throughput. Regarding the timing closure optimizations,
our streaming architecture enables us to bind smaller FPGA
kernels onto each die and pipeline the long wires (especially
die-crossing wires) between FPGA kernels.

Finally, since there are 55 canonical ERI quartet classes and
each class may have a different computation, memory, and
floorplanning demand, we also develop an automation tool,
together with an accurate performance model, to automatically
generate the best performing HLS design with a corresponding
floorplanning strategy for each quartet class on a given FPGA.

Experimental results on the Alveo U280 FPGA demonstrate
that SERI reaches a peak throughput of 23.8 GERIS (109

ERIs per second) for large quartet classes on one Alveo U280
FPGA. Compared to the prior best-performing FPGA de-
sign [20], on average, SERI achieves a speedup of 9.80x and a
performance/watt improvement of 14.25x. Compared to state-
of-the-art libint library [8] on a 64-core AMD EPYC 7713
CPU, it achieves a speedup of 3.21x and a performance/watt
improvement of 15.47x. Compared to state-of-the-art libintx
library [18] on an Nvidia A40 GPU, it achieves a speedup of
15.64x and a performance/watt improvement of 30.03x.

In summary, this paper makes the following contributions:
1. A high-throughput streaming architecture to accelerate ERI

computations on resource-constrained HBM-based FPGAs,
covering all canonical quartet classes up to f orbital.

2. A design automation tool, which incorporates all computa-
tion, memory, and floorplanning optimizations, to generate
the best performing design for each ERI class.

3. Superior performance and performance/watt over prior best
performing FPGA design and state-of-the-art CPU library.

II. BACKGROUND ON ERI COMPUTATION

An ERI describes the repulsion between the densities of two
electrons [1], [23], one at r1 and the other at r2∫∫

dr1 dr2
ga,A,α(r1)gb,B,β(r1)gc,C,γ(r2)gd,D,δ(r2)

|r1 − r2|
(1)

where ga,A,α(r1) is a normalized Cartesian Gaussian-type
orbital (GTO) centered at A = [Ax, Ay, Az] with orbital
exponent α and angular momentum La = ax + ay + az . The
4 GTOs may locate at 4 different atomic centers. Hence, the
ERI computations may exhibit quartic scaling complexity.

The most commonly used orbitals for AIMD are s, p, d, and
f for L = 0, 1, 2, and 3, respectively [3]. Each orbital consists
of ng = (L + 1)(L + 2)/2 Cartesian GTOs, e.g., 10 GTOs
for f orbital. Conventionally, [ab|cd] denotes an ERI quartet
class, which includes a set of integrals for all combinations
of the involved GTOs, e.g., an [ff |ff] class contains 10,000
ERIs. Furthermore, an [ab|cd] quartet class is uniquely defined
as canonical class, if it satisfies

La ≥ Lb, Lc ≥ Ld, and ngangb ≥ ngcngd . (2)

There are 55 canonical [ab|cd] classes for up to the f orbital.
Many algorithms for the ERI computation were devised in

the past decades [23]–[28]. The Rys quadrature algorithm [25]

is chosen in this work for the FPGA streaming architecture
design. It requires less intermediates for computing an [ab|cd]
quartet class, and thus can facilitate the inter-kernel com-
munication. Furthermore, the Rys quadrature is known to be
numerically stable for the ERI classes involving higher angular
momentum, and one can take advantage of the single-precision
floating-point operations on FPGAs.

The Rys quadrature algorithm is briefly described in Fig. 1.
Interested audience are referred to the original paper [25].

Input: Gabcd, Rrys
Output: [ab|cd]n-bit, ϵ

1: for each [ab|cd] quartet do
2: #1 Preparation: build B and C as coefficients for RRs
3: #2 Recurrence relations (RRs):
4: for ξ ∈ {x, y, z}, µ ∈ [1, nrys], l ∈ [1, Ld] do
5: for k ∈ [1, Lc + Ld], j ∈ [1, Lb], i ∈ [1, La + Lb] do
6: compute I(i, j, k, l, µ, ξ) via RRs in Eqs. (3)
7: end for
8: end for
9: #3 Gaussian quadrature:

10: for d ∈ [1, ngd], c ∈ [1, ngc], b ∈ [1, ngb], a ∈ [1, nga] do
11: compute all [ab|cd] integrals via Eq. (4)
12: end for
13: find bmax
14: ϵ← bmax · (2n−1 − 1)−1

15: #4 Compress-store: compute [ab|cd]n-bit via Eq. (5)
16: end for

Fig. 1: Pseudocode for computing the [ab|cd] quartets.

For an [ab|cd] quartet class, the Rys algorithm requires
4 GTOs (Gabcd), including atomic coordinates and orbital
exponents, and the roots and weights of the Rys polynomials
(Rrys) as inputs from the host. Then, the following stages are
performed for the ERI computation.
Preparation stage: Two small auxiliary arrays B ∈ R3×nrys

and C ∈ R6×nrys are built by using the inputs, where nrys
denotes the order of the Rys polynomials. B and C are used
as coefficients for recurrence relations in the next stage.
Recurrence relations stage: The intermediates are arranged
in a 6-dimensional array I(i, j, k, l, µ, ξ) and computed via 4
multi-dimensional recurrence relations (RRs)

I(i, j, k, l, µ, ξ)
horizontal RR←−−−−−−− I(i, j, k + l, 0, µ, ξ) (3a)
horizontal RR←−−−−−−− I(i+ j, 0, k + l, 0, µ, ξ) (3b)

vertical RR←−−−−−− I(i+ j, 0, 0, 0, µ, ξ) (3c)
vertical RR←−−−−−− I(0, 0, 0, 0, µ, ξ) (3d)

starting from I(0, 0, 0, 0, µ, ξ) 1. The indices i, j, k, and l are
for the orbitals a, b, c, and d, respectively. µ enumerates the
orders of the Rys polynomial and ξ represents x, y, and z-axis.
The vertical RRs increase the angular momenta for a and b,
while the horizontal RRs shift them from a and b to orbitals
c and d, respectively. In the dimensions of orbitals there are
read-after-write data dependencies for these RRs.
Gaussian quadrature stage: All ERIs of an [ab|cd] quartet
class are computed by Gaussian quadrature

1Due to complexity only high level RRs are shown here. Complete formulas
can be found in the original paper [25].

[ab|cd] =
nrys∑
µ=1

wµIµ,xIµ,yIµ,z (4)

where wµ is the weights of the Rys polynomial and Iµ,x, Iµ,y ,
and Iµ,z are shorthand for the corresponding I(i, j, k, l, µ, ξ)
in the x, y, and z-axis.
Compress-store stage: Tens of trillions of ERIs are usually
required in real-world AIMD simulations. To reduce such
high memory demand, an ERI compression algorithm [29] is
seamlessly integrated into the ERI computation.

After computing the [ab|cd] quartet, the maximum absolute
integral, denoted as bmax, needs to be found. Then, the floating-
point ERIs can be represented as n-bit signed integers for ϵ,
a “quantum value” for this quartet

[ab|cd]n-bit = ANINT([ab|cd]/ϵ), (5)
where the function ANINT returns the nearest integer of its
argument and the divide operation is avoided by multiplying
ϵ−1 in our design. The [ab|cd]n-bit array, together with ϵ, form
the outputs of the ERI computation. The maximum absolute
error for the compression is bound by ϵ/2 for a quartet.

III. MOTIVATION AND CHALLENGES

A. Prior Studies and Limitations

The previous best performing FPGA design for ERI com-
putation [20] implemented a buffer-based architecture on the
Intel Stratix 10 GX 2800 FPGA to customize its on-chip
memory layout and corresponding loop structures to exploit
data parallelism and pipeline parallelism. In addition, it em-
ployed ERI compression to reduce the data volume and thus
reduce the off-chip bandwidth requirement. It achieved a peak
throughput of 11.2 GERIS. However, it has several limitations.
1. Off-chip memory bandwidth bottleneck: When comput-

ing large quartet classes, its overall throughput is limited
by the off-chip memory bandwidth, even after the ERI
compression technique is employed.

2. Limited computation parallelism: When computing small
quartet classes with small loop trip counts, its overall
throughput is limited by the amount of computation paral-
lelism, since the design was only parallelized via the loops
in the recurrence relations and Gaussian quadrature stages.

3. Overhead in buffer-based dataflow: Its buffer-based
dataflow implementation not only consumes a large amount
of on-chip memory banks, but also incurs a multi-cycle (10
cycles in [20]) overhead to begin each dataflow iteration.

B. New Challenges on AMD/Xilinx HBM-based FPGA

To address the off-chip bandwidth bottleneck for computing
large quartet classes, we decide to leverage the high-bandwidth
memory on modern datacenter FPGAs. Specifically, we select
the AMD/Xilinx Alveo U280 FPGA board, which features an
HBM with up to 460 GB/s off-chip bandwidth. However, it
also presents a number of new challenges for our accelerator
design due to distinct characteristics of AMD/Xilinx Alveo
FPGAs compared to that of Intel/Altera Stratix 10 FPGAs.
Challenge 1: Fewer on-chip memory blocks. The ERI
calculation requires a significant amount of data to be passed

TABLE I: Memory block comparison.
M20K BRAM18K URAM

Capacity 20 Kb 18 Kb 288 Kb
Port max bit-width 40 36 72 x2 (TDP)

TABLE II: Available memory block bandwidth comparison.
Stratix 10
GX 2800 Alveo U280 Alveo U280

(dynamic region)
Mem blocks M20K BRAM + (URAM) BRAM + (URAM)
Num banks 11,721 4,032 + (960) 3,552 + (960)
Net bit-width 475K 145K + (69K) 127K + (69K)

between calculation stages. To achieve a high throughput, a
large on-chip memory bandwidth is required, especially for
a buffer-based design. Unfortunately, compared to the Stratix
10 GX 2800 board, Alveo U280 is a smaller board, which
provides fewer on-chip memory blocks (bandwidth).

Shown in Table I, the BRAM18K memory block on the
Alveo U280 is roughly equivalent to the M20K memory
block on the Stratix 10. Table II compares the total number
of memory banks and aggregated block memory port-width
(i.e., on-chip memory bandwidth) between the two boards.
For the aggregated port bit-width, the Alveo U280 is 3.3x
lower considering BRAMs, or 2.2x lower considering URAM
as well, compared to the Stratix 10 board.

Due to the significantly fewer on-chip memory blocks and
lower on-chip memory bandwidth, a straightforward porting
of the buffer-based dataflow design [20] onto the Alveo U280
board is no longer feasible and a new architecture is needed.
Challenge 2: Lower floating-point computing capability in
DSPs. Furthermore, the Stratix 10 GX 2800 features hard-
ened DSP blocks, which supports 5, 760 simultaneous single-
precision floating-point multiplications (fmuls). However, for
the Alveo U280, the default floating-point multiplication im-
plementation requires 3 DSP slices, resulting in a capacity
of 9, 024/3 = 3, 008 fmuls, only 52% of that in the Stratix
10 board. This requires a more efficient architecture with less
computing resource available.
Challenge 3: More challenging timing closure. Unlike the
Stratix 10 GX 2800 board that uses a monolithic die for its
programmable logic region, the Alveo U280 is comprised of
multiple dies called super logic regions (SLRs). These dies are
stitched together using super long lines (SLLs). However, in
addition to limited SLL connections between the dies, there is
also a timing penalty for wires which cross the boundaries.
Thus, it is difficult to place & route large kernels across
multiple SLRs, often resulting in timing closure failure or poor
achieved frequencies. This is especially more challenging for
buffer-based designs that would result in more SLR crossings.

IV. SERI DESIGN AND IMPLEMENTATION

A. Overall Architecture and Novelties

SERI addresses the previous design limitations and new
challenges with the following novelties.
A streaming architecture on an HBM-based FPGA. To
address the challenge of insufficient on-chip memory blocks
and the overhead in buffer-based dataflow design, we propose
a streaming architecture design by avoiding buffers wherever

Inputs
Gabcd, Rrys, n

H
ig

h
B

an
dw

id
th

M
em

or
y

(H
B

M
) Preparation

(Prep)
Recurrence

Relations (RR)
Buffer

Permutation (BP)

Compress
Store (CS)

2720 bits

Find Bmax
(FB)

2048 bits 1536 bits

Line Buf [ab|cd]

3200 bits

PIPO I(i, j, k, l, μ, ξ)

Gaussian Quadrature (GQ)

read only

7x

256 bits
Outputs

[ab|cd]16-bit, ε

SERI Streaming Accelerator on FPGAHost Memory

32 bits 32 bits

3200 bits

Fig. 2: Design of our SERI streaming FPGA accelerator; stream bit-widths shown for [ff |ff], the largest ERI quartet class.

possible in favour of streams. Moreover, the streaming ar-
chitecture also reduces the connectivity complexity between
different dataflow stages, resulting in less routing congestion
and better timing closure. Fig. 2 shows the overall design of
SERI’s streaming architecture for the largest [ff |ff] class.

After inputs are loaded from host memory onto the FPGA-
side HBM—HBM is leveraged to address the off-chip memory
bandwidth bottleneck—the FPGA is invoked to compute n
number of quartets for a given molecule. Each stage of the
ERI computation shown in Fig. 1 is implemented as a separate
Vitis HLS kernel, which are connected by kernel-to-kernel
streaming connections. The major buffer used in the design
is in the GQ (Gaussian quadrature) kernel, which is imple-
mented as a Ping-Pong buffer (PIPO) of the 6-dimensional
intermediates array (I) to enable uninterrupted processing of
the data. Additionally, as ERI values are streamed through
the find bmax stage, they are stored temporarily in a line
buffer (implemented using a large-depth FIFO) until bmax
is calculated and the compress-store (CS) stage can start
processing them. The outputs of the CS stage—which include
the compressed 16-bit ERIs along with the corresponding ϵ
values needed for decompression—are written consecutively
to the HBM through multiple concurrent ports to avoid the
off-chip bandwidth bottleneck.
Computation efficiency optimizations. To address the lim-
ited computation parallelism issue in small to medium sized
quartets, we explore the input parallelism of the design by
duplicating multiple copies for different inputs. To address
the limited DSP computing capability challenge, we maximize
resource reuse in non-bottleneck dataflow kernels to reduce
their DSP usage, and trade-off DSPs for LUTs where possible.
Buffer permutation support. To further reduce the number of
on-chip memory blocks required by the major 6-dimensional
intermediates buffer used in the GQ stage, we introduce a
novel buffer permutation (BP) stage between the recurrence
relations (RR) and GQ stages. The BP stage is designed to
automatically change the layout of the intermediates buffer to
meet different buffer partitioning requirements from both RR
and GQ stages using the minimum number of on-chip memory
banks, while not affecting the dataflow throughput.
Design automation. Finally, we develop a design automation
tool, together with an accurate performance model, to automat-
ically optimize the flexible SERI architecture for each of the
55 canonical quartet classes, which have varying computation,
memory, and floorplanning requirements. Moreover, to address
the timing closure difficulties on the Alveo U280, SERI auto-
matically places each kernel within an SLR to avoid routing

through SLLs, and automatically splits a large kernel into two
smaller copies to fit into an SLR. Inter-kernel communication
is done through (pipelined) streaming connections, allowing
for a large amount of data to be continuously transferred over
the die boundaries without any performance overhead.

B. Design of Each Streaming Stage

1) Preparation (Prep): The prep stage receives two sets of
primary input arguments, 4 GTOs (Gabcd) and the roots and
weights of the Rys polynomial (Rrys), plus n, the number of
quartets for a given molecule. This stage is always the smallest
relative to the others, allowing it to be unrolled when needed.
As such its latency can be tuned to match that of the slowest
stage to allow for more resource reuse and leave resources for
more complex downstream stages.

2) Recurrence Relations (RR): This stage processes the 6-
fold loops over the dimensions ξµlkji as defined in Fig. 1. The
k, j, i dimensions are always fully unrolled, with the remaining
ξ, µ, and l dimensions being flattened and pipelined. Depend-
ing on the resource availability, further flexible unrolling by
a RR unroll factor (Urr) can be applied, which is controlled
by our design automation tool. The base number of cycles
for an iteration to complete (when Urr = 1) is defined as
nBrr = 3×nrys× (Ld+1). The actual number of cycles with
additional flexible unrolling becomes nrr = ceil(nBrr/Urr).

The output stream bit-width is defined by Urr× (Lc+1)×
(Lb + 1)× (La + 1)× 32 and produces a value each cycle.

A design parameter RR_SPLIT is introduced, which allows
dividing the RR computation into multiple kernels to avoid a
high degree of clustering that impacts the timing closure.

3) Gaussian Quadrature (GQ): This stage computes all
ERIs for an [ab|cd] quartet using Eq. (4). The dimensions a
and b as defined in Fig. 1, µ and ξ as defined in Eq. (4),
are always fully unrolled, with the remaining c and d being
flattened and pipelined. The access to Iµ,ξ, where µ ∈ [1, nrys]
and ξ ∈ {x, y, z}, presents irregular patterns and does not
match the order in which Iµ,ξ are produced in the RR stage.
Therefore, a PIPO with depth=2 (i.e., double buffer) is used
to overlap the buffer loading and GQ calculation time.

For large quartet classes, this stage quickly becomes
bottlenecked by the available resources (primarily DSPs)
within a single SLR. To solve this issue, the design parameter
GQ_SPLIT is introduced, which allows the GQ calculations to
be divided into 2 separate HLS kernels GQ-A and GQ-B. Each
kernel requires its own complete copy of the I(i, j, k, l, µ, ξ)
buffer to accommodate the complex access pattern. As GQ-A
receives data from the RR, in addition to storing it in its local
PIPO, it also relays the data to GQ-B through kernel-to-kernel

streams. Both GQ-A and GQ-B then produce outputs directly
to the find bmax kernel.

Additionally, to optimize for timing closure, the ξ dimension
of I(i, j, k, l, µ, ξ) is manually unrolled into multiple arrays.
This encourages Vivado to spread them across the board, sig-
nificantly reducing congestion and improving timing closure.

The number of cycles to complete an iteration of GQ is
defined as ngq = ngc × ngd . The outputs of the GQ kernel(s)
are continuously streamed to the next stage with a net bit-
width of ngb × nga × nrys × 3× 32.

For smaller quartet classes, while there are enough FPGA
resources to increase the compute parallelism, there are insuffi-
cient trip counts in the c and d dimensions (e.g., c = d = 1 in the
[ff |ss] quartet) for further unrolling. Instead, SERI increases
the input parallelism of the design by placing multiple copies
of this entire accelerator (all stages) on the FPGA to work for
multiple input molecules. The input parallelism of the design
is controlled by the design parameter INP_PAR.

4) Buffer Permutation (BP): For the intermediates buffer
I(i, j, k, l, µ, ξ), as explained in Sections IV-B2 and IV-B3, in
each cycle, while RR concurrently writes to the i, j, k dimen-
sions (and potentially l, µ, and ξ dimensions with Urr > 1),
GQ concurrently reads from the i, j, µ, and ξ dimensions. To
satisfy both stages, the buffer has to be almost completely
partitioned along all dimensions. This is too costly for on-chip
memory consumption and routing complexity, especially for
medium to large quartet classes. The huge bit-width access and
low depth do not allow an effective use of BRAMs/URAMs,
while using LUTRAMs for such a large buffer fails to achieve
timing closure due to high congestion levels.

Therefore, we introduce a BP stage to reduce the buffer
partition and routing complexity of the PIPO between the
RR and GQ stages. This BP stage uses an array of FIFOs
to re-arrange the order of data to allow both RR and GQ to
emit and consume data in their ideal fashion with a relatively
small resource overhead. Since it is added in parallel with
the other stages in the dataflow, the dataflow throughput is
not affected as long as its latency is not larger than the other
stages (i.e., RR and GQ stages). Further details on its design
and implementation are discussed in Section IV-C.

The design parameter BP_BYPASS is introduced, which
will remove the BP stage and have RR feeding directly into
GQ when it is enabled. This is used for quartets that end in |ss]
as the relevant k and l dimensions are always 1. It means that
I(i, j, 1, 1, µ, ξ) will be fully partitioned anyway, removing the
need for buffer permutation.

5) Find bmax (FB): To compress the ERIs, the bmax value
needs to be found for the given iteration’s data. This FB stage
compares the ERIs that are being streamed from the GQ step
and passes them to an external line buffer (implemented using
a large-depth FIFO), so that they can be buffered until all ERIs
have been checked and bmax has been found. The bmax value
is then sent to the compress-store stage.

As find bmax just passes through values from the previous
stage, the output stream bit-width for the ERIs is the same
(ngb ×nga ×nrys× 3× 32), and the stream to send bmax is 32

bits. The number of cycles to complete an iteration is also the
same as that of GQ: nfb = ngq = ngc × ngd .

6) Compress-Store (CS): Once the CS stage receives a bmax
value, it begins to drain the external line buffer and compress
the 32-bit floats into 16 bits as given in Eq. (5). The resulting
compressed ERIs are written continuously to the HBM over
a number of 256-bit AXI ports via burst transactions. The
design parameter NUM_ERIS_PORTS controls the number of
AXI ports used and is balanced by the design automation tool
to ensure that sufficient off-chip bandwidth is provided.

The 32-bit ϵ value is also sent through these AXI ports
in the spare bandwidth, since the available bandwidth of the
combined AXI port-width always slightly exceeds the number
of bits needed to be written in each cycle. As the CS stage
stores values at the same rate it receives them, the number
of cycles to complete a dataflow iteration is the same as the
preceding stages: ncs = nfb = ngq = ngc × ngd .

C. Buffer Permutation

When a computing stage S uses a buffer B, it has buffer
partitioning requirements. Conceptually, the buffer B can be
divided into two sets of dimensions: 1) a set of fully partitioned
dimensions, P , and 2) a set of non-partitioned dimensions, D,
representing the buffer depth of each partition. Note a partially
partitioned dimension can always be decomposed into a fully
partitioned dimension and a non-partitioned dimension.

If two stages S1 and S2 access the same buffer, each views
the buffer from its own perspective as P1, D1 and P2, D2. For
example, for the RR stage, P1 = {i, j, k} and D1 = {l, µ, ξ};
for simplicity of writing, we assume Urr = 1 and it works sim-
ilarly for Urr > 1. While for the GQ stage, P2 = {i, j, µ, ξ}
and D2 = {k, l}. Unfortunately, this causes a conflict as
P1 ̸= P2. The naive approach of resolving this conflict is to
partition the buffer such that Pbuffer = P1∪P2 = {i, j, k, µ, ξ},
resulting in excessive usage of on-chip memory blocks and
complex routing, as explained in Section IV-B4.

Instead, we propose a novel generic buffer permutation (BP)
stage to address this issue. Before explaining how BP works
in detail, we first define the following dimension sets.

PP = P1 ∩ P2 = {i, j} always partitioned (6)
DD = D1 ∩D2 = {l} always depth (7)
DP = D1 −DD = {µ, ξ} depth to partitioned (8)
PD = P1 − PP = {k} partitioned to depth (9)

We also define the length function of a dimension set, e.g.,
len(P) or len(D), to be the total number of elements in those
dimensions, i.e., width of a P set or depth of a D set.

The buffer permutation flow is illustrated in Fig. 3, which
is composed of N FIFOs, with the following FIFO properties.

in width = len(P1) = len({i, j, k}) (10)
out width = len(PP) = len({i, j}) (11)

in depth = 2× len(DD)× ⌈len(DP)/N⌉
= 2× len({l})× ⌈len({µ, ξ})/N⌉) (12)

Basically, it reads consecutively from RR buffer’s (actually
implemented in streams) fully partitioned dimensions (P1 =

RR

P1= {i,j,k}

D1= {l,μ,ξ}

in_width
= len({i,j,k}) out_width = len({i,j})

GQ

P2= {i,j,μ,ξ}

D2= {k,l}

1

N

...

in_depth = 2×len(l)×⌈len({μ,ξ})⌉

⌈len({μ,ξ})⌉

ξ
...

...

...

...

...

...
Fig. 3: Buffer permutation flow diagram.

{i, j, k}) and stores those values in the N FIFOs one after
another in sequence. While this FIFO write phase can be
coded such that it breaks from the loop earlier, decreasing
the number of cycles, SERI opts for a different approach.
It trades slightly longer trip count for significantly simpler
control logic, alleviating congestion. As such, the FIFO write
phase takes TW = len(DD)×⌈len(DP)/N⌉×N = len({l})×
⌈len({µ, ξ})/N⌉ ×N cycles to complete.

Meanwhile, the FIFO read phase concurrently reads from
all N FIFOs the PP = {i, j} dimensions each cycle, and
places the values in the appropriate index of GQ’s buffer so
that its fully partitioned dimensions become P2 = {i, j, µ, ξ};
the GQ stage has a PIPO buffer. This FIFO read will take
TR = len(DD) × ⌈len(DP)/N⌉ × len(PD) = len(l) ×
⌈len({µ, ξ})/N⌉× len(k)) cycles to complete. Note the FIFO
depth is sized with twice the needed depth (Eq. (12)), so that
both FIFO write and read phases can run in parallel in a
dataflow fashion without stalling.

The total number of cycles the BP stage takes is defined as:
nbp = max(TW , TR)

= max(len(l)× ⌈len({µ, ξ})/N⌉)×N,

len(l)× ⌈len({µ, ξ})/N⌉ × len(k)) (13)
= max((Ld + 1)× ⌈nrys × 3/N⌉ ×N,

(Ld + 1)× ⌈nrys × 3/N⌉ × (Lc + 1))

The number of FIFOs, N , is controlled by the design param-
eter BP_FIFO_COUNT. Due to the optimization necessary to
achieve reliable timing closure in the GQ stage (as discussed
in Section IV-B3), N needs to be a multiple of 3.

D. Overall Performance Model

The overall throughput of our design is characterized by
the achieved frequency (fMHz), number of ERIs per quartet
(nERIQ), and the longest number of cycles it takes among all
the stages to complete calculations in the dataflow. The number
of cycles it takes to complete each stage is defined as nrr, nbp,
ngq , nfb, and ncs in Sections IV-B and IV-C, corresponding to
the RR, BP, GQ, FB, and CS stages, respectively. Note ncs =
nfb = ngq . The preparation stage does not have a separate
count as it can be flexibly scaled to any number of cycles. The
input parallelism of the design will increase the throughput of
our accelerator by a factor of INP_PAR. Therefore, the overall
throughput GERIS (109 ERIs per second) is calculated as:

GERIS =
INP_PAR · fMHz · nERIQ

103 ·max(nrr, nbp, ngq)
(14)

E. Design Automation Tool
In order to facilitate the design of kernels that span a large

range of 55 canonical quartet classes, a design automation
tool is created to automatically adjust the design parameters
of the flexible architecture to scale the design. Given the target
quartet class [ab|cd] and desired input parallelism INP_PAR
(optional), it will produce a tailored FPGA design and build the
bitstream. The automation tool selects the canonical quartets as
they have the largest angular momenta for the a and b orbitals,
which results in the highest degree of consistent compute
parallelism, optimizing for the highest throughput.

Our tool automatically chooses the following parameters
RR_SPLIT, GQ_SPLIT, BP_BYPASS, BP_FIFO_COUNT,
and NUM_ERIS_PORTS, as defined in Fig. 4, Eqs. (15) and
(16). The tool manages the selection of these parameters for a
specified quartet class and ensures the correct version of each
kernel is synthesised and connected properly. Lastly, when a
user does not specify the input parallelism INP_PAR, based
on the resource utilization of INP_PAR=1, we choose the
maximum INP_PAR that passes the timing closure.

RR
Prep

GQ A
BP

GQ B

FB

CS RR
Prep

GQ B

FB

CS

GQ A

RR
Prep

GQ

FB

CS

BP
RR RR

Prep

GQ

FB

CSRR

Pr
ep

GQ B

FB
CS

RR B

GQ A
BP

RR A

1

2
1 2

0
10

1

Fig. 4: Automatic floorplanning configurations.

BP_FIFO_COUNT =

{
6 if [fp|fd], [fd|fd]
3 else

(15)

NUM_ERIS_PORTS = ceil(ngangb/16) (16)
Moreover, our automation tool also varies the floorplanning

given the parameters to achieve better timing closure. It will
assign kernels to SLR or slot regions based on the RR_SPLIT,
GQ_SPLIT, and BP_BYPASS parameters as shown in Fig. 4.
This is necessary not only because the kernel topology will
change due to the design parameters, but also because the
amount of relative FPGA resources that each stage consumes
changes among quartet classes. For example, the RR stage
takes less resources than GQ for large quartet classes; however,
for smaller quartet classes they are closer to each other.

Our floorplanning configurations are shown in Fig. 4. The
floorplan is designed to minimize large stream connection
crossings and follows the overall pattern that data starts from
the bottom left, goes up and back down in a clockwise fashion
and ends back at the HBM on the bottom right. Some floorplan
configurations have multiple regions for the same stage, such
as RR. These get utilized when the input parallelism goes
above 1, and kernel instances are distributed evenly between
those regions. If there is only a single slot for a kernel type,
all instances of it get placed in the same slot or SLR region
when input parallelism increases.

[ss
|ss]

[pp|s
s]

[dd|s
s]

[ff
|ss]

[dd|p
p]

[ff
|pp]

[dd|d
d]

[ff
|dd]

[ff
|ff]

0

10

20

30
T

hr
ou

gh
pu

t(
G

E
R

IS
)

[pp|p
p]

SERI (Alveo U280)
A40 GPU

FCCM’23 (Stratix 10 GX 2800)
64 Core EPYC 7713 CPU

Fig. 5: Throughput comparison between SERI, best previous
FPGA design, libint running on 64-core CPU, and libinx
running on an Nvidia A40 GPU.

V. RESULTS AND ANALYSIS

A. Experimental Setup

SERI is synthesized and built with Vitis HLS & Vivado
2023.2 and evaluated on an Alveo U280 FPGA with C++ host
code and Xilinx runtime (XRT) version 2.16. The Benchmark
molecular system consists of 16 sites, each possesses s, p, d,
and f orbitals, arranged on a cubic 4 × 2 × 2 lattice, with
a lattice parameter of 1 Å. To accurately measure some very
fast running kernels with a high input parallelism, multiple
benchmark molecules are calculated in a single shot. The
execution time is measured for the FPGA kernel run only and
the power consumption is measured using the XRT xbutil
command. Results are collected from the average of five runs.

On the AMD EPYC 7713 CPU (64 cores), the ERI compu-
tation is performed using the libint library [8] (version 2.7.2)
parallelized with MPI (Open MPI, version 4.1.1) on all 64
cores for a runtime of about 10 seconds. At the same time,
the power consumption of this CPU socket is measured by
using RAPL counters [30]. The CPU benchmark is compiled
with GCC 11.2.0 using -O3 -march=znver3.

On the Nvidia A40 GPU, the libintx library [18] is used,
with power consumption collected via nvidia-smi.

Both CPU and GPU libraries internally use double preci-
sion. The numerical results produced by SERI are compared
with the libint computation. The maximum absolute errors are
about 10−7 – 10−5 Hartree (in an acceptable range), mainly
caused by the 16-bit ERI compression.

All of the these experiments were carried out on the Noctua
1 & 2 supercomputers [31].

B. Overall Performance and Performance/Watt Comparison

Fig. 5 compares the throughput between SERI, the previous
best performing FPGA design (FCCM’23 [20]), a 64-core
AMD EPYC 7713 CPU running libint, and an Nvidia A40
GPU running libintx. SERI outperforms them for all quartets
and achieves an average speedup of 9.80x against [20] on
the Intel Stratix 10 GX 2800 FPGA, 3.21x compared to the
64-core CPU, and 15.64x compared to the A40 GPU. The
reasons for our substantial improvement over the previous best
performing FPGA design [20] are explained in Sections III-A
and IV-A. The variance in SERI’s achieved throughput for

[ss
|ss]
[pp|s

s]

[dd|s
s]

[ff
|ss]

[dd|p
p]

[ff
|pp]

[dd|d
d]

[ff
|ff]

0

100

200

300

400

Fr
eq

ue
nc

y
(M

H
z) Achieved Frequency

0

5

10

In
pu

tP
ar

al
le

lis
m

[pp|p
p]

[ff
|dd]

Input Parallelism

Fig. 6: Frequency and input parallelism factor achieved for
each quartet class in SERI FPGA builds.

[ss
|ss]

[pp|s
s]

[dd|s
s]

[ff
|ss]

[dd|p
p]

[ff
|pp]

[dd|d
d]

[ff
|dd]

[ff
|ff]

0.0

0.2

0.4

0.6

Pe
rf

or
m

an
ce

pe
rW

at
t(

G
E

R
IS

/W
)

[pp|p
p]

SERI (Alveo U280)
A40 GPU

FCCM’23 (Stratix 10 GX 2800)
64 Core EPYC 7713 CPU

Fig. 7: Energy efficiency comparison between SERI, best
previous FPGA design, libint running on 64-core CPU, and
libinx running on an Nvidia A40 GPU.

different quartets is mainly caused by the achieved input
parallelism factor and clock frequency, as shown in Fig. 6.

Fig. 7 compares their energy efficiency. SERI achieves sig-
nificantly better performance/watt, on average, 14.25x better
than the prior best FPGA design [20], 15.47x better over the
64-core CPU, and 30.03x better over the A40 GPU.

C. Performance Model Accuracy and Breakdown

Fig. 8 compares the predicted throughput using our per-
formance model against the actual achieved throughput for
all the 55 canonical quartet classes, implemented with an
input parallelism of 1. For the majority of quartet classes, our
predicted throughput well matches with the actual throughput.
For a few occasional cases, such as the [ff |ss] quartet class,
there is a relatively larger variance. This is because their
pipeline loop trip counts are very low, and there is one clock
cycle overhead in the design (most likely caused by HBM data
access), which now represents a bigger percentage.

[ss
|ss]

[pp|s
s]

[dd|s
s]

[ff
|ss]

[dd|p
p]

[ff
|pp]

[dd|d
d]

[ff
|dd]

[ff
|ff]

0

10

20

T
hr

ou
gh

pu
t(

G
E

R
IS

)

[pp|p
p]

Actual (inp par=1)
Perf Model

Fig. 8: Actual throughput vs. model predicted throughput using
input parallelism = 1 for all canonical quartet classes.

Table III lists latencies of each streaming dataflow stage—
including nrr (latency of recurrence relations stage), nbp (la-
tency of buffer permutation stage), and ngq (same latency for

TABLE III: Latency of each stage for sample quartet classes.
Quartet nERIQ nrr nbp ngq

[pp|ss] 9 1 - 1
[dd|dp] 216 6 3 6
[fd|dp] 1080 15 18 17
[fd|fd] 3600 54 54 60

|ss]|pp] |dd] |ff]
[ss|
[pp|

[dd|

[ff|
(a) CLBs

|ss]|pp] |dd] |ff]
[ss|
[pp|

[dd|

[ff|
(b) DSPs

|ss]|pp] |dd] |ff]
[ss|
[pp|

[dd|

[ff|
(c) BRAMs

|ss]|pp] |dd] |ff]
[ss|
[pp|

[dd|

[ff|
(d) SLLs

25%

45%

65%

85%

30%

55%

80%

10%

35%

55%

0%

35%

65%

Fig. 9: Post place-and-route resource utilization.

Gaussian quadrature, find bmax, and compress store stages)—
for sample quartet classes in different ranges. As shown, our
design automation can automatically choose various design
parameters to balance the latencies between dataflow stages.

D. Resource Utilization

Fig. 9 shows the final post place-and-route resource uti-
lization for each of the 55 canonical quartet classes, with the
highest input parallelism designs that passed timing closure.
Overall, most quartet classes utilize a significant amount
of FPGA resources, especially the CLB (configurable logic
block) and SLL resources, which usually limit the timing
closure. Note that a larger quartet class does not always
consume more resources, due to the different input parallelism
factors applied for each quartet, as shown in Fig. 6.

Due to our streaming architecture design, the BRAM utiliza-
tion has been significantly reduced, and does not exceed 53%
of our smaller Alveo U280 FPGA board. For |ss] quartets,
BRAM utilization is very low, since the intermediates array
is small enough to be fully partitioned, and thus the buffer
permutation stage is bypassed. Due to our more efficient
architecture design, we manage to use less than 65% DSPs
of Alveo U280 FPGA to achieve an average of 9.80x speedup
over prior best performing FPGA design [20].

Regarding the SLL utilization, quartet classes that have
a larger bit-width-to-compute ratio and a higher input par-
allelism have a larger SLL utilization. Therefore, the SLL
utilization is lower for [ff | quartet classes compared to others,
since: 1) they have more computation to do per quartet, 2) they
use a lower stream-width to transfer data between streaming
stages as they have more cycles to do the data transfer (as long
as it can be hidden by the computation), and 3) they have a
lower input parallelism.

VI. RELATED WORK

Recent developments for the ERI computations in quantum
chemistry mostly target fixed computer architectures, e.g.,
CPUs [8], [9], [12] and GPUs [16], [17]. As explained in
Introduction, ERI computations on CPUs and GPUs usually
suffer from inefficient vectorization [10] and underutilized
parallelization [17]. A quantitative comparison to state-of-the-
art CPU and GPU libraries is presented in Section V-B.

Many studies have demonstrated that classical molecular
dynamics simulations can benefit from the flexible configura-
bility of FPGAs [32]–[35]. On the other hand, the FPGA-
accelerated AIMD simulations are largely unexplored. An
early work from Kindratenko et al. reported the computation
of [ss|ss] on FPGAs using the SRC MAP C compiler [19].
Recently, the ERI computation for generic [ab|cd] classes up
to f orbital was performed by Wu et al. [20], for which we
have a quantitative comparison to in Section V-B.

VII. CONCLUSION AND FUTURE WORK

In this work, we have presented SERI, a high-throughput
streaming accelerator for the ERI computation in quantum
chemistry using HBM-based FPGAs. This new streaming de-
sign overcomes several drawbacks in the prior best performing
FPGA kernels on the Intel Stratix 10 GX 2800: 1) the on-
chip memory consumption is reduced dramatically by means
of streaming intermediates between the computation kernels;
2) the multi-cycle overhead for each dataflow iteration in the
earlier buffer-based design is eliminated, and 3) better timing
closure and floorplanning are also achieved across multiple
SLRs. Furthermore, to optimize the diverse computation,
memory, and floorplanning requirements, we have developed
an automation tool for designing individual FPGA kernels
for all 55 canonical [ab|cd] quartet classes to achieve high-
throughput for the ERI computations. Our evaluation for a
synthetic molecular system on the AMD/Xilinx Alveo U280
FPGA demonstrates that, SERI achieves an average speedup
of 9.80x and an average performance/watt improvement of
14.25x than the earlier buffer-based designs on Intel Stratix 10
GX 2800 FPGAs. Compared to the libint library on the 64-core
AMD EPYC 7713 CPU, SERI achieves an average speedup
of 3.21x and an average performance/watt improvement of
15.47x. In future work, we plan to explore large AIMD
simulations with multi-FPGAs, and integrate with existing
AIMD simulation software.

ACKNOWLEDGEMENTS

We acknowledge the partial support from NSERC Discov-
ery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance
Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund
and BC Knowledge Development Fund. We also thank the
computing time provided to us on the high-performance com-
puters Noctua 1 & 2 at the NHR Center PC2. These are funded
by the German Federal Ministry of Education and Research
and the state governments participating on the basis of the res-
olutions of the GWK for the national high-performance com-
puting at universities (www.nhr-verein.de/unsere-partner).

REFERENCES

[1] J. A. Pople, “Nobel Lecture: Quantum chemical models,” Reviews of
Modern Physics, vol. 71, pp. 1267–1274, Oct 1999.

[2] W. Kohn, “Nobel Lecture: Electronic structure of matter – wave func-
tions and density functionals,” Reviews of Modern Physics, vol. 71, pp.
1253–1266, Oct 1999.

[3] J. Hutter, M. Iannuzzi, and T. D. Kühne, “Ab initio molecular dynamics:
A guide to applications,” in Comprehensive computational chemistry
(First Edition), M. Yáñez and R. J. Boyd, Eds. Oxford: Elsevier, 2024,
pp. 493–517.

[4] A. D. Becke, “A new mixing of Hartree–Fock and local density-
functional theories,” The Journal of Chemical Physics, vol. 98, no. 2,
pp. 1372–1377, 01 1993.

[5] R. Iftimie, P. Minary, and M. E. Tuckerman, “Ab initio molecular dy-
namics: Concepts, recent developments, and future trends,” Proceedings
of the National Academy of Sciences, vol. 102, no. 19, pp. 6654–6659,
2005.

[6] S. V. Levchenko, X. Ren, J. Wieferink, R. Johanni, P. Rinke, V. Blum,
and M. Scheffler, “Hybrid functionals for large periodic systems in
an all-electron, numeric atom-centered basis framework,” Computer
Physics Communications, vol. 192, pp. 60–69, 2015.

[7] M. Redies, G. Michalicek, J. Bouaziz, C. Terboven, M. S. Müller,
S. Blügel, and D. Wortmann, “Fast all-electron hybrid functionals and
their application to rare-earth iron garnets,” Frontiers in Materials, vol. 9,
2022.

[8] E. F. Valeev, “Libint: A library for the evaluation of molec-
ular integrals of many-body operators over Gaussian functions,”
http://libint.valeyev.net, 2022, version 2.7.2.

[9] Q. Sun, “Libcint: An efficient general integral library for Gaussian basis
functions,” Journal of Computational Chemistry, vol. 36, pp. 1664–1671,
2015.

[10] B. P. Pritchard and E. Chow, “Horizontal vectorization of electron re-
pulsion integrals,” Journal of Computational Chemistry, vol. 37, no. 28,
pp. 2537–2546, 2016.

[11] H. Huang and E. Chow, “Accelerating quantum chemistry with vector-
ized and batched integrals,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2018, pp.
529–542.

[12] F. Neese, “The SHARK integral generation and digestion system,”
Journal of Computational Chemistry, vol. 44, no. 3, pp. 381–396, 2023.

[13] I. S. Ufimtsev and T. J. Martı́nez, “Quantum chemistry on graphical
processing units. 1. strategies for two-electron integral evaluation,”
Journal of Chemical Theory and Computation, vol. 4, no. 2, pp. 222–
231, 2008.

[14] A. Asadchev, V. Allada, J. Felder, B. M. Bode, M. S. Gordon, and
T. L. Windus, “Uncontracted Rys quadrature implementation of up to
G functions on graphical processing units,” Journal of Chemical Theory
and Computation, vol. 6, no. 3, pp. 696–704, 2010.

[15] J. Kussmann and C. Ochsenfeld, “Employing OpenCL to accelerate ab
initio calculations on graphics processing units,” Journal of Chemical
Theory and Computation, vol. 13, no. 6, pp. 2712–2716, 2017.

[16] Y. Tian, B. Suo, Y. Ma, and Z. Jin, “Optimizing two-electron repulsion
integral calculations with McMurchie–Davidson method on graphic
processing unit,” The Journal of Chemical Physics, vol. 155, no. 3, p.
034112, 07 2021.

[17] G. M. B. Jorge Luis Galvez Vallejo and M. S. Gordon, “High-
performance GPU-accelerated evaluation of electron repulsion integrals,”
Molecular Physics, vol. 121, no. 9-10, p. e2112987, 2023.

[18] A. Asadchev and E. F. Valeev, “Libintx: A library for accelerated
evaluation of molecular integrals of many-body operators over Gaussian
atomic orbitals.” https://github.com/ValeevGroup/libintx, 2023, experi-
mental version.

[19] V. Kindratenko, I. Ufimtsev, and T. Martı́nez, “Evaluation of two-
electron repulsion integrals over Gaussian basis functions on SRC-
6 reconfigurable computer,” https://users.ncsa.illinois.edu/kindr/papers/
rssi08\ paper2.pdf, 2008.

[20] X. Wu, T. Kenter, R. Schade, T. D. Kühne, and C. Plessl, “Computing
and compressing electron repulsion integrals on FPGAs,” in 2023 IEEE
31st Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM). Los Alamitos, CA, USA: IEEE
Computer Society, May 2023, pp. 162–173.

[21] D. G. A. Smith, L. A. Burns, A. C. Simmonett, R. M. Parrish, M. C.
Schieber, R. Galvelis, P. Kraus, H. Kruse, R. Di Remigio, A. Alenaizan,
A. M. James, S. Lehtola, J. P. Misiewicz, M. Scheurer, R. A. Shaw,
J. B. Schriber, Y. Xie, Z. L. Glick, D. A. Sirianni, J. S. O’Brien,
J. M. Waldrop, A. Kumar, E. G. Hohenstein, B. P. Pritchard, B. R.
Brooks, I. Schaefer, Henry F., A. Y. Sokolov, K. Patkowski, I. DePrince,
A. Eugene, U. Bozkaya, R. A. King, F. A. Evangelista, J. M. Turney,
T. D. Crawford, and C. D. Sherrill, “PSI4 1.4: Open-source software for
high-throughput quantum chemistry,” The Journal of Chemical Physics,
vol. 152, no. 18, p. 184108, 05 2020.

[22] T. D. Kühne, M. Iannuzzi, M. Del Ben, V. V. Rybkin, P. Seewald,
F. Stein, T. Laino, R. Z. Khaliullin, O. Schütt, F. Schiffmann, D. Golze,
J. Wilhelm, S. Chulkov, M. H. Bani-Hashemian, V. Weber, U. Borštnik,
M. Taillefumier, A. S. Jakobovits, A. Lazzaro, H. Pabst, T. Müller,
R. Schade, M. Guidon, S. Andermatt, N. Holmberg, G. K. Schenter,
A. Hehn, A. Bussy, F. Belleflamme, G. Tabacchi, A. Glöß, M. Lass,
I. Bethune, C. J. Mundy, C. Plessl, M. Watkins, J. VandeVondele,
M. Krack, and J. Hutter, “CP2K: An electronic structure and molecular
dynamics software package - quickstep: Efficient and accurate electronic
structure calculations,” The Journal of Chemical Physics, vol. 152,
no. 19, p. 194103, 05 2020.

[23] T. Helgaker, P. Jørgensen, and J. Olsen, Molecular Integral Evaluation.
John Wiley & Sons, Ltd, 2000, ch. 9, pp. 336–432.

[24] M. Dupuis, J. Rys, and H. F. King, “Evaluation of molecular integrals
over Gaussian basis functions,” The Journal of Chemical Physics,
vol. 65, no. 1, pp. 111–116, 07 1976.

[25] J. Rys, M. Dupuis, and H. F. King, “Computation of electron repulsion
integrals using the Rys quadrature method,” Journal of Computational
Chemistry, vol. 4, no. 2, pp. 154–157, 1983.

[26] S. Obara and A. Saika, “Efficient recursive computation of molecular
integrals over Cartesian Gaussian functions,” The Journal of Chemical
Physics, vol. 84, no. 7, pp. 3963–3974, 04 1986.

[27] M. Head-Gordon and J. A. Pople, “A method for two-electron Gaussian
integral and integral derivative evaluation using recurrence relations,”
The Journal of Chemical Physics, vol. 89, no. 9, pp. 5777–5786, 11
1988.

[28] L. E. McMurchie and E. R. Davidson, “One- and two-electron integrals
over Cartesian Gaussian functions,” Journal of Computational Physics,
vol. 26, no. 2, pp. 218–231, 1978.

[29] M. Guidon, F. Schiffmann, J. Hutter, and J. VandeVondele, “Ab initio
molecular dynamics using hybrid density functionals,” The Journal of
Chemical Physics, vol. 128, no. 21, p. 214104, 06 2008.

[30] The Linux Kernel Development Community, “Power capping
framework,” https://www.kernel.org/doc/html/latest/power/powercap/
powercap.html, 2024, [Accessed: March 27th, 2024].

[31] C. Bauer, T. Kenter, M. Lass, L. Mazur, M. Meyer, H. Nitsche,
H. Riebler, R. Schade, M. Schwarz, N. Winnwa, A. Wiens, X. Wu,
C. Plessl, and J. Simon, “Noctua 2 supercomputer,” Journal of large-
scale research facilities, vol. 9, 2024.

[32] Y. Gu, T. VanCourt, and M. Herbordt, “Accelerating molecular dynamics
simulations with configurable circuits,” in International Conference on
Field Programmable Logic and Applications, 2005., 2005, pp. 475–480.

[33] D. Jones, J. E. Allen, Y. Yang, W. F. Drew Bennett, M. Gokhale,
N. Moshiri, and T. S. Rosing, “Accelerators for classical molecular
dynamics simulations of biomolecules,” Journal of Chemical Theory and
Computation, vol. 18, no. 7, pp. 4047–4069, 2022, pMID: 35710099.

[34] C. Yang, T. Geng, T. Wang, R. Patel, Q. Xiong, A. Sanaullah, C. Wu,
J. Sheng, C. Lin, V. Sachdeva, W. Sherman, and M. Herbordt, “Fully
integrated FPGA molecular dynamics simulations,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’19. New York, NY, USA: Association
for Computing Machinery, 2019.

[35] C. Wu, T. Geng, A. Guo, S. Bandara, P. Haghi, C. Liu, A. Li,
and M. Herbordt, “FASDA: An FPGA-aided, scalable and distributed
accelerator for range-limited molecular dynamics,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, ser. SC ’23. New York, NY, USA: Association
for Computing Machinery, 2023.

