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Abstract—This paper introduces SDA, the first effort to adapt
the expensive stable diffusion (SD) model for edge FPGA deploy-
ment. First, we apply quantization-aware training to quantize
its weights to 4-bit and activations to 8-bit (W4A8) with a
negligible accuracy loss. Based on that, we propose a high-
performance hybrid systolic array (hybridSA) architecture that
natively executes convolution and attention operators across
varying quantization bit-widths (e.g., W4A8 and all 8-bit QKTV
in attention). To improve computational efficiency, hybridSA
integrates diverse DSP packing techniques into hybrid weight-
stationary and output-stationary dataflows that are optimized
for convolution and attention. It also supports flexible dataflow
transitions to address the distinct demands of its output sequence
by subsequent nonlinear operators. Moreover, we observe that
nonlinear operators become the new performance bottleneck
after the acceleration of convolution and attention, and offload
them onto the FPGA as well. To reduce the latency of each
nonlinear operator, we pipeline its own execution at a fine
granularity. To minimize the resource utilization of nonlinear
operators, we carefully balance their execution with hybridSA in
a coarse-grained pipeline. Experimental results demonstrate that
our low-bit (W4A8) SDA accelerator on the embedded AMD-
Xilinx ZCU102 FPGA achieves a speedup of 97.3× (which takes
about 2.1 minutes for one SD inference), compared to the original
SD-v1.5 model on the ARM Cortex-A53 CPU (which takes about
3.5 hours for one SD inference). Our SDA project is open sourced
here: https://github.com/Michaela1224/SDA code.

I. INTRODUCTION

In the past few years, diffusion models have demonstrated
impressive quality improvement in various image generation
tasks over generative adversarial networks [1]–[6]. Among
them, the recent stable diffusion (SD) is a latent text-to-image
diffusion model that can generate photo-realistic images from
textual inputs [7]. However, the high quality of generated
images comes at the cost of substantial computational and
memory demands, which poses great challenges for deploy-
ment on resource-constrained edge devices.

i) Large model size and computation cost. SD mainly
consists of variational autoencoder (VAE) [8], [9], text en-
coder [10], and UNet [11]. UNet is the major bottleneck (more
than 98% of the total execution time) and has about 800
million parameters (3.1 GB in FP32). Moreover, the denoising
UNet demands many iterative forwarding steps to ensure
generative quality, e.g., 50 steps in SD-v1.5 [7], and each step
requires about 730 GOPs (giga-operations). When running on
an embedded ARM Cortex-A53 CPU, this UNet takes about
3.5 hours, which makes it impractical for deployment.

ii) Complex model structure. Shown in Fig. 1, in addition
to the Transformer blocks [12], which comprises multi-head
attention (including both self-attention and cross-attention)
and feed-forward networks, the SD UNet also integrates
convolution-based ResNet blocks [13]. These two blocks, at
various downsample and upsample scales, are nearly evenly

distributed within the SD UNet, which constrains the perfor-
mance gains achievable by existing accelerators specialized for
either the convolution or the attention operator [14]–[16].

iii) Variety of nonlinear operators. SD integrates a variety
of widely used nonlinear operators, including LayerNorm
(LNorm) [12], GroupNorm (GNorm) [17], SoftMax [12],
GeGLU [18], and SiLU [19], as shown in Fig. 1. These
nonlinear operators would become the new bottleneck after
the main convolution and attention operators are accelerated.
Moreover, they also pose new challenges for dataflow design
of the main convolution and attention accelerator, as they
require specific sequences of output streams from the main
accelerator to facilitate the execution of nonlinear operators.

To address the above challenges, at the algorithm level,
we first apply quantization-aware training for the SD model
with 4-bit weight and 8-bit activation (W4A8) quantization,
to reduce the model parameter size by 8× (from 3.1 GB to
389 MB) with comparable FID and CLIP scores.

At the hardware level, we design a low-bit stable diffusion
accelerator (SDA) to efficiently execute SD inference on edge
FPGAs. To meet the requirements of various main operators
(i.e., convolution and matrix multiplication inside attention)
and their output sequences for nonlinear operators, we pro-
pose a high-performance hybrid systolic array (hybridSA)
architecture. First, hybridSA supports native execution of
both convolution and attention with different quantization
bit-widths (e.g., W4A8 and all 8-bit QKTV in attention).
Second, to improve the computation efficiency in hybridSA,
we employ two 4-bit DSP packing methods for convolution
and matrix multiplication operators to allow them to share a
single DSP (DSP48E2). We achieve an average DSP efficiency
of 4 ops/DSP and 2 ops/DSP for convolution and matrix
multiplication (4-bit multiply by 8-bit). Third, hybridSA sup-
ports flexible switching between weight-stationary and output-
stationary dataflows to generate output sequences friendly for
the processing of subsequent nonlinear operators.

Since nonlinear operators become the new performance
bottleneck after the main operators are accelerated on our
hybridSA, we accelerate them on the FPGA as well and
carefully dataflow their execution with the hybridSA. First,
to reduce the on-chip memory usage, we design a shared tile
buffer used by all nonlinear operators to communicate with
hybridSA. Second, to reduce the latency of each nonlinear
operator, we pipeline its own execution in a fine granularity;
note that pipeline has a negligible resource overhead. Third,
to minimize the resource utilization by nonlinear operators
while not hurting the overall performance, we dataflow their
execution with hybridSA in a coarse-grained pipeline, and
minimize the parallelism degree inside the nonlinear operators

https://github.com/Michaela1224/SDA_code


to merely match the hybridSA speed so that their execution
latency can be hidden (overlapped).

We collect our experiment results for running the contem-
porary SD-v1.5 model [20] on the embedded AMD-Xilinx
ZCU102 ARM-FPGA system-on-chip (SoC). Compared to the
original floating-point SD UNet running on the ARM CPU,
our SDA design on the FPGA, with 4-bit weight and 8-bit
activation, achieves a speedup of 97.3×, with comparable FID
and CLIP scores. Compared to the ARM CPU, SDA achieves
an average speedup of 126.5× and 77.2× for different ResNet
and Transformer blocks, respectively.

In summary, this paper makes the following contributions:
1. The first high-performance low-bit (W4A8) stable diffusion

accelerator on edge FPGAs with a negligible accuracy loss.
2. A hybrid systolic array architecture that supports native

execution of convolution and attention with different quan-
tization bit-widths, flexible dataflow switching to facilitate
nonlinear processing, and effective DSP packing.

3. Resource-efficient nonlinear units implementation and effi-
cient integration with hybridSA via two-level pipelining.

4. A comprehensive evaluation and analysis of SDA.

II. STABLE DIFFUSION AND LOW-BIT QUANTIZATION

A. Overview of Stable Diffusion Model
We select state-of-the-art stable diffusion v1.5 (SD-

v1.5) [20] as the foundational model for our exploration in
the text-to-image domain. The SD architecture is composed
of three primary components: text encoder, UNet, and VAE
decoder. Specifically, the denoising UNet is the most compu-
tationally intensive component in SD and requires numerous
iterative forwarding steps to maintain high generative quality.
For example, in SD-v1.5, the total number of denoising
timesteps required for one inference is 50, which takes about
3.5 hours to run on an embedded ARM Cortex-A53 CPU.
Therefore, our primary goal is to accelerate UNet for deploy-
ment on edge devices, especially on low power edge FPGAs.

Fig. 1 presents an overview of the UNet architecture in
SD-v1.5. The core of UNet is its encoder-decoder structure.
The encoder progressively downsamples the input, capturing
information at different scales and abstracting the high-level
features. The decoder then upsamples this information, re-
constructing the image details. First, the UNet contains three
Cross Attention Downsample Blocks (CADB) of different
sizes. Immediately followed by a Downsample Block (DB),
a Cross Attention Middle Block (CAMB), and an Upsample
Block (UB). Finally, the UNet also contains three Cross
Attention Upsample Blocks (CAUB) of different sizes. Each
block within the architecture is further composed of either
Transformer blocks, ResNet blocks, or a combination of both.

The ResNet block is composed of convolution operators
(CONV3/CONV1), a fully connected layer (1D FC), Group-
Norm (GNorm), and SiLU operators. The more complex
Transformer block comprises convolution (CONV1) opera-
tors, attention operators, GNorm, LayerNorm(LNorm), and
GeGLU [18] operators. Table I lists key variables and their
explanations relating to the UNet structure.
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Fig. 1: UNet structure in SD. Variables explained in Table I.

TABLE I: Variables in UNet (Fig. 1) and their explanation
Operator Variable Explanation

Convolution
(ResNet/Transformer)

R Row/col size
N/M Number of input/output channels

G Number of channels per group for GNorm

Attention
(Transformer)

R×R Row size of input matrix in attention
M Col size of input matrix in attention
H Number of heads in attention
L Col size of output matrix for GeGLU

B. Our Low-Bit Quantization for Stable Diffusion

To reduce computational demands and model size of the SD
model, quantization is considered.

1) Prior Quantization Studies and Limitations: Quantiza-
tion is categorized into two types: post-training quantization
(PTQ) and quantization-aware training (QAT). While previous
work [21]–[23] applied PTQ to diffusion model quantization,
PTQ often led to accuracy losses and seldom yielded stable
diffusion results. On the other hand, QAT, as employed by
TDQ [24] for diffusion model quantization, similarly did not
demonstrate stable diffusion outcomes. A recent approach,
EfficientDM [25], implemented QAT on SD quantization,
achieving an accuracy comparable to those of floating-point
models. However, EfficientDM was limited to weight quan-
tization, maintaining floating-point activation in SD. These
prior works [21]–[25] noted a key challenge in SD model
quantization: the activation value range varies during the
denoising process, rendering a single scaling factor inadequate
for covering the activation range in each denoising step.



TABLE II: FID and CLIP score of our low-bit SD-v1.5

Method Weight
Width

Activation
Width FID ↓ CLIP ↑ GOPs Param

(MB)
SD-v1.5 32-bit 32-bit 26.63 0.3055 729.4 3,115

SD-v1.5 (QAT) 4-bit 8-bit 26.71 0.3051 854.8∗ 389
∗We transform the 8-bit by 8-bit multiplication in attention to two 4-bit by
8-bit multiplications.

2) Activation Scale-Aware W4A8 Quantization: To address
the prior limitation and enhance the accuracy of the quantized
SD model, we utilized QAT and applied distinct scaling factors
at each denoising step. Please note that in selecting the bit-
width, we found that for weight representation, we can reduce
it to 4-bit without degrading accuracy. However, activation is
more sensitive than weight, and the value range varies during
the iterative denoising process. Therefore, we need to use 8-bit
representation for activation and apply distinct scaling factors
at each denoising step to preserve accuracy.

We perform zero-shot evaluation on MS COCO dataset
with 6000 randomly sampled prompts, and set classifier-free
guidance scale as 7.5 to generate the images. We applied the
Fréchet inception distance (FID) score to evaluate the quality
of generated images. A lower FID score suggests that the
distributions of generated images are more similar to those
of real images, indicating better quality and higher similarity.
Additionally, we used the contrastive language–image pre-
training (CLIP) score to assess how well the content of the
generated image aligns with the text prompt’s description. A
higher CLIP score denotes a better match, implying closer
alignment between the image and the textual description.

We compare the quantitative accuracy of our quantized
model with the baseline floating-point model in Table II.
Specifically, we quantize the model weight to 4 bits and
activation to 8 bits (W4A8). Shown in Table II, the low-bit
SD model achieves comparable FID and CLIP scores to the
original floating-point model while compressing the parameter
size by 8 times. It is important to note that the lower-bit
model exhibits higher GOPs due to our conversion of 8-bit
activation multiplied by 8-bit activation (i.e., Q × KT and
QKT ×V ) in the attention of Transformer block into twice as
many operations of 4-bit by 8-bit for uniform representation.

III. LOW-BIT STABLE DIFFUSION ACCELERATOR DESIGN

A. Overall SDA Architecture and Design Novelties

Based on our quantized low-bit SD model in Section II, we
design a high-performance stable diffusion accelerator (SDA)
on the embedded AMD-Xilinx ARM-FPGA SoC, whose over-
all architecture is shown in Fig. 2. Its key component is the
SD core on the FPGA, which accelerates all the operators in
SD UNet on the FPGA to avoid the performance limitation
imposed by Amdahl’s law. The SD core includes: 1) a hybrid
systolic array (hybridSA) to accelerate the main operators,
convolution in all blocks and matrix multiplication in attention
blocks, with different quantization bit-widths (e.g., W4A8 and
all 8-bit QKTV in attention), 2) a special function unit (SFU)
to accelerate all nonlinear operators, plus the linear shortcut
add and transpose operators (we denote all these operators in
SFU as nonlinear operators for the simplicity of writing),
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Fig. 2: Overall architecture of SDA.

and 3) a shared tile buffer that is effectively shared by all
nonlinear operators to communicate with hybridSA. Note that
hybridSA takes 4-bit weights and 8-bit activations as inputs,
and we decompose one 8-bit by 8-bit multiplication into two
4-bit by 8-bit multiplications to be computed by hybridSA.
SFU takes 16-bit fixed-point data as inputs. The quantization
and dequantization units that convert data precisions between
hybridSA and SFU are omitted in Fig. 2.

To execute different combinations of main operators and
nonlinear operators in the SD model, the ARM CPU sends
scheduling instructions to configure the datapath scheduler on
the FPGA via the AXI bus that connects to the shared off-
chip memory. The datapath scheduler subsequently directs the
SD core to execute using the corresponding dataflow mode
of hybridSA and nonlinear operators in the SFU. At the same
time, the datapath scheduler also instructs the buffer controller
to manage the corresponding on-chip buffer reads and writes.
Novel hybridSA design. HybridSA exploits a hybrid systolic
array design with flexible switching between output station-
ary (OS) and weight stationary (WS) dataflows to support
native execution of various main operators in convolution
and attention with different quantization bit-widths. It also
generates output sequences friendly for the dataflow process-
ing of subsequent nonlinear operators. Moreover, hybridSA
employs two efficient DSP packing techniques inside each
PE (processing element) tailored for each dataflow mode to
improve the DSP utilization; on average, each DSP can pack
4 W4A8 operations in convolution and 2 W4A8 operations in
matrix multiplication.
Novel resource-efficient nonlinear units (SFU) design and
integration. In SDA, we accelerate all nonlinear operators
inside the SFU and carefully dataflow their execution with
hybridSA. Each nonlinear operator exploits the fine-grained
pipeline to reduce its latency. All nonlinear operators share
the same tile buffer to dataflow with hybridSA, so as to
reduce on-chip memory usage. Moreover, to minimize the
resource utilization by nonlinear operators, the parallelism
degree inside nonlinear operators is minimized to merely
match the hybridSA speed in the coarse-grained pipeline.

B. HybirdSA for Low-bit Convolution and Attention

1) Design Challenges: The design of the hybridSA archi-
tecture needs to meet the following requirements:
#1 Native support for various main operators with dif-
ferent bit-widths: Our analysis indicates that convolution



operators and matrix multiplication operators in the SD UNet
contribute approximately equally to the total model GOPs.
Moreover, despite adopting W4A8 quantization for the SD
model, attention modules (ATTN1 and ATTN2 in Fig. 1) in the
Transformer block still require 8-bit by 8-bit multiplications
(e.g., Q ×KT and QKT × V ), which account for 29.5% of
the total GOPs in the low-bit SD model.

This requires a unified architecture to efficiently support
the native execution of those main operators. While prior
studies [14], [16], [26]–[28] have extensively explored systolic
array (SA) architectures to support the execution of convolu-
tion or matrix multiplication, they only support one of them in
native hardware execution and pay extra overhead to convert
the other operator into the one with native hardware support.
#2 High computation efficiency with effective DSP packing:
To improve the computation efficiency for low-bit matrix
multiplication (MM) and convolution, it is natural to expect
that the design of each processing element (PE) can maximize
the DSP utilization through appropriate low-bit DSP packing
methods. While a DSP can easily pack two (and at most two)
W4A8 multiplications in MM [29], recent studies [30]–[32]
demonstrate that for W4A4 convolution, a DSP can pack up
to 6 multiplications and 2 additions (i.e., 8 W4A4 operations
in total). Therefore, our goal is to pack 4 W4A8 operations
for convolution and 2 W4A8 operations for MM, which poses
further challenges to integrate two different DSP packing
mechanisms into one unified hybridSA design.
#3 Flexible dataflow switching to generate friendly output
sequences for subsequent nonlinear units: Shown in Fig. 1,
after the MM operator, SoftMax, LNorm, and GeGLU require
the hybridSA to output a complete row of data (Z1×R×R for
Eq. (1), Z1×M for Eq. (2), and Z1×2L for Eq. (4)) as quickly
as possible; note that we implement the CONV1 operator as
MM as well. This prefers an output-stationary (OS) dataflow
design for hybridSA, so that hybridSA can directly stream
its outputs onto those nonlinear operators instead of writing
and then reading the off-chip memory. On the other hand,
following convolution (CONV3) in the ResNet block, GNorm
requires the hybridSA to output data for the first G channels
(ZR×R×G for Eq. (2)) as soon as possible. This prefers a
weight-stationary (WS) dataflow design for hybridSA. As a
result, hybridSA needs to support the native execution and
flexible switching of MM-OS and CONV-WS dataflows.

2) HybridSA with MM-OS and CONV-WS Dataflows: To
meet the above design requirements, we design our hybridSA
architecture as shown in Fig. 3. It has X × Y processing
elements (PEs), which natively support the execution of MM-
OS and CONV-WS dataflows to maximize the sharing of
scarce on-chip resources. Each PE takes a 4-bit weight and
8-bit activation (W4A8) as inputs; and the 8-bit by 8-bit multi-
plication is decomposed into two 4-bit by 8-bit multiplications
with an extra shift and addition. Inside each PE, it further
decomposes the 8-bit activation into two 4-bit segments,
so that it can apply the more effective 4-bit (W4A4) DSP
packing [30], [31] to improve the computation efficiency.
MM-OS dataflow: For the matrix multiplication (MM) inside
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the Transformer blocks, hybridSA operates in the MM-OS
mode to generate friendly output sequences for its subsequent
SoftMax, LNorm, and GeGLU nonlinear operators. As shown
in Fig. 3(a), 8-bit activations (A) and 4-bit weights (W) are
propagated rightwards and downwards, respectively. Output
results are generated internally in each PE and then pushed
downwards through the array. As depicted in Fig. 4(a), hy-
bridSA with MM-OS dataflow first generates a tile of output
data along the rows of the matrix (ZX×M ) to satisfy the
data consumption of the subsequent nonlinear units. Note that
convolutions with a kernel size of 1 (CONV1), in the ResNet
block and the Transformer block, are processed as MM to
operate in the OS-based dataflow.

Shown in Fig. 3(b), each PE receives two 8-bit activations A
at a time and splits each into a pair of 4-bit activations. The
first two aligned 4-bit activations from two 8-bit activations
are then fed into one DSP48E2, while the remaining pair
of 4-bit activations are directed to another DSP48E2. Each
DSP48E2 performs four multiplications [29] along with two
4-bit weights, as shown in Fig. 4(c). A cost-effective bit-width
correction (BitCR in Fig. 3(b)) circuit is added to correct the
sign-bit contamination in the packed multiplications [33]. In
summary, one DSP performs four W4A4 multiplications, or
two W4A8 multiplications in MM-OS dataflow mode.
CONV-WS dataflow: To compute convolution operators and
to output friendly sequences for the subsequent GNorm non-
linear operator, hybridSA executes in CONV-WS mode. As
depicted in Fig. 3(a), CONV-WS dataflow shares the activa-
tion supply logic in that of MM-OS dataflow, but each PE
individually owns weights and passes partial results (Psum)
downwards. Fig. 5(a) shows that hybridSA can sequentially
generate a block of output data along the channels (ZR×R×G)
required for executing the subsequent GNorm nonlinear opera-
tor. Within each PE, the same DSP48E2 can perform six 4-bit
multiplications and two 4-bit additions [30]–[32] in CONV-
WS mode, as shown in Fig. 5(c). That is, each DSP can
perform four W4A8 operations (three multiplications and one
addition) in CONV-WS dataflow mode.
MM-OS and CONV-WS dataflow switching: Lastly, shown
in Fig. 4(b) and Fig. 5(b), we reorganize the output data layout
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from the packed DSP computations on the fly, so that we
can ensure consistent data packing when transitioning between
MM-OS and CONV-WS dataflows with different DSP packing
techniques, without any additional conversion overhead.

C. Efficient Nonlinear Units and Integration with HybridSA

1) Overall Design Principles: The complex SD UNet
model structure, shown in Fig. 1, incorporates a variety of
nonlinear operators, such as SoftMax, LNorm, GNorm, SiLU,
GeGLU, and linear shortcut add and transpose. As will be
presented in Fig. 11 in Section IV-C, after the acceleration
of main operators, these nonlinear operators become the
new performance bottleneck and need to be offloaded onto
the FPGA as well. A straightforward implementation of all
operators—with the same parallelism degree as the main
SA design (e.g., [14] did it this way for SoftMax) and a
separate communication channel between hybridSA for each
operator—will soon consume all the FPGA resources while
for the majority of the time, the nonlinear units remain idle.

To reduce the on-chip memory usage, we design a shared
tile buffer to be shared by all nonlinear units to communi-
cate with hybridSA. To minimize the resource utilization by
nonlinear operators while not hurting the overall performance,
we employ a two-level pipeline design. First, we pipeline the
execution inside each nonlinear operator in a fine granularity.
Second, we design a coarse-grained pipeline between the
nonlinear operators and hybridSA to hide their execution
latency; the parallelism degree inside nonlinear operators can
be minimized to merely match the hybridSA speed.

Since the support of shortcut add and transpose units are
relatively straightforward given the shared tile buffer, next we

describe more implementation details for other nonlinear units.
2) SoftMax Unit: The SoftMax operator [12] in the ATTN1

and ATTN2 of the Transformer block is calculated as:

SoftMax(xi) = exi−xmax/
∑R×R

j=1
exj−xmax (1)

where xi ∈ R1×R×R. SoftMax necessitates three sequen-
tial row-wise data accesses, involving the identification of
the maximum value (MAX), exponentiation and summation
(SUB-EXP-ACC), and the normalization division (DIV).

Fig. 6(a) illustrates the detailed hardware structure of the
SoftMax unit, composed of a coarse-grained tile-level pipeline
and a fine-grained row-level pipeline. In the coarse-grained
tile-level pipeline, double tile buffers are inserted between the
hybridSA and SoftMax unit. The tile buffer collects and stores
row-wise tile data generated by hybridSA, and facilitates the
rate transition from the high-speed hybridSA (stage 1) to the
low-speed SoftMax unit (stage 2).

In stage 1, the maximum value (MAX) is also calculated
while storing tile data. Since SoftMax’s input data are from the
matrix multiplication result of all 8-bit QKTV , the two 4b×8b
outputs from hybridSA need to be left-shifted and added (ADD
in stage 1). For stage 2, double row buffers are introduced to
pipeline exponentiation summation (SUB-EXP-ACC in stage
2-1) and normalization division (DIV in stage 2-2).

Fig. 7 depicts the scheduling view between hybridSA and
SoftMax unit. Row-level pipeline implements time overlap
of exponentiation and summation, and normalization division;
while tile-level pipeline overlaps the entire SoftMax computa-
tion with hybridSA calculation (operating in MM-OS mode).
Consequently, the parallelism setting for the SoftMax unit only
needs to ensure that the computation is completed within the
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time hybridSA generates two 4b×8b tiles, thereby reducing
on-chip resource consumption.

3) L/GNorm Unit and SiLU Unit: LNorm and GNorm
operators [17] share the following identical computations:

L/GNorm(xi) = γi × (xi − µ)/σ + βi (2)

where xi ∈ Z1×M for LNorm, xi ∈ ZR×R×G for GNorm.
They require three sequential accesses to input data to compute
the mean (µ), standard deviation (σ), and normalization based
on pre-trained affine transform parameters (γ and β).

Based on their common computational characteristics, we
design a tile-level pipeline as depicted in Fig. 6(b), where
LNorm and GNorm share most of the logic. We adopt integer
quantized norm proposed in [34], which iteratively computes
both the mean and mean-square value [35] (stage 1). Addition-
ally, to accommodate different accumulation requirements for
µ and σ in LNorm and GNorm, we added extra accumulation
(ACC) for GNorm in stage 2. Specifically, for matrix tile data
(ZX×M ) generated by hybridSA in MM-OS mode, LNorm
directly obtains X means and variances without additional
accumulation. For convolutional tile data (ZR×R×G) gener-
ated by hybridSA in CONV-WS mode, GNorm enables the
accumulator to obtain one mean and variance.

Shown in Fig. 8, the parallelism setting of the L/GNorm
unit only needs to ensure that the current tile calculation is
completed before the next tile data arrives. In addition, the
SiLU unit following GNorm in the ResNet block has the same

parallelism factor with GNorm and executes hardware-friendly
pixel-wise linear hard approximation calculations [36]:

SiLU(xi) ≈ xi ×ReLU6(xi + 3)/6 (3)
4) GeGLU Unit: The GeGLU operator [18] in the Trans-

former block needs one row of data to compute as follows:
GeGLU(xi) = xi ×GeLU(xL+i) (4)

GeLU(xL+i) ≈ xL+i ×ReLU6(1.702xL+i + 3)/6 (5)
where xi ∈ R1×L.

Shown in Fig. 9, GeGLU has a similar tile-level pipeline,
where piece-wise linear hard approximation [36] for GeLU is
executed in stage 2. The shared row buffer used in SoftMax
(Fig. 6) is reused to store the first half of a row (xi ∈ R1×L)
and feed data for multiplication (MUL) performed after GeLU.

IV. EVALUATION

A. Experimental setup
1) Training Setup: We utilize the diffusers library as the

foundation for our code and employed Quantization-Aware
Training (QAT) on the SD-v1.5 model using publicly available
datasets [37], [38]. In addition to 4-bit weight and 8-bit
activation quantization, other bias parameters adopt a 16-bit
fixed-point format. We document the quantitative outcomes
in terms of FID and CLIP scores on the MS-COCO 2014
validation set [39] for zero-shot evaluation. The majority of
our training utilized 16 nodes, each equipped with 8 NVIDIA
A100 GPUs boasting either 40GB or 80GB of memory. We
opted for the AdamW [40] optimizer with a weight decay
setting of 0.01 and established a training batch size of 2,048.

2) Hardware Platform: Our proposed SDA is evaluated
on the AMD-Xilinx-ZCU102 ARM-FPGA SoC board with
a high-speed 4GB DDR4 SODIMM. This board integrates
an ARM Cortex-A53 CPU and a ZU9EG FPGA, which has
2,520 DSPs, 912 BRAMs, and 274.1K LUTs. We utilize Vitis
HLS and Vivado to implement our SDA design, which runs
on board at a clock frequency of 250MHz. The resource
utilization is collected from post place-and-route reports and
the power is measured using a power meter. Our CPU baseline
is the original SD model with FP32 precision running on the
ARM CPU as it does not support low-bit precision.
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Fig. 10: Latency and speedup comparison of different ResNet and Transformer blocks with different sizes in Fig. 1.
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Fig. 11: Execution time breakdown before/after acceleration.

TABLE III: Performance and energy-efficiency comparison

Platform Performance
(iter/s)

Power
(W)

Energy
(iter/s/W) GOPS

CPU 0.004 2.871 0.0014 3
SDA 0.389 9.977 0.039 332.5

GPU 0.386 7.5 0.052 281.5
0.489 15 0.033 356.7

B. Overall Performance

Shown in Table III, compared to the embedded ARM
CPU, our SDA achieves a 97.3× speedup (measured in SD
UNet iterations processed per second) and a 27.9× energy
efficiency improvement. The overall throughput of the SDA is
332.5 GOPS. Due to the adoption of different DSP packing
methods, CONV3 and MM/CONV1 operators in the low-
bit SD model achieve a throughput of 400.6 GOPS and
301.3 GOPS, respectively. Fig. 10 represents the speedup of
ResNet and Transformer blocks of various sizes. Our SDA
demonstrates an average speedup of 126.5× and 77.2× for
ResNet and Transformer blocks over CPU, respectively.

In addition, we also run SD UNet on Jetson TX2 embedded
GPU. At 7.5W, it achieves 0.386 iter/s and 0.052 iter/s/W. At
15W, it achieves 0.489 iter/s and 0.033 iter/s/W. Our SDA
achieves 0.389 iter/s and 0.039 iter/s/W, which is comparable
to the TX2 performance running at 7.5W and slightly outper-
forms TX2 in performance/watt running at 15W.

C. Performance Breakdown

Fig. 11 (a) and (b) break down the execution time for main
and nonlinear operators in ResNet and Transformer blocks
before and after acceleration. Specifically, when all operators
are executed on the ARM CPU, CONV in the ResNet block
and MM in the Transformer block occupy 96.5% and 59.1%
of the overall time, becoming the primary latency bottlenecks.
Subsequently, after accelerating these main operators with our
proposed hybridSA, the time percentage of CONV and MM
decreases to 18.3% and 3.1% of the updated overall time,
respectively. At this point, nonlinear operators—especially



TABLE IV: Resource utilization of our SDA accelerator
Component DSP LUT BRAM
HybridSA 485(19.2%) 140,397(51.2%) 333(36.5%)

Nonlinear Units 211(8.4%) 46,562(17.0%) 342.5(37.6%)
Other Logic 110(4.4%) 33,737(12.3%) 137.5(15.0%)

Total 806(32.0%) 220,696(80.5%) 813(89.1%)

SiLU and GNorm in the ResNet block, SoftMax and GeGLU
in the Transformer block—executing on the CPU become
the new bottleneck. Due to Amdahl’s law, it does not help
much even if we increase the spatial size of hybridSA to
further reduce the latency of main operators. Instead, we
should allocate hardware resources now to accelerate the
nonlinear operators. Indeed, our SDA design eliminates the
new bottleneck imposed by nonlinear operators, which are
accelerated on the FPGA and dataflowed with our hybridSA
to well hide their latencies.

D. Resource Utilization

Table IV illustrates the resource utilization of the proposed
SDA. We implement the proposed hybridSA with a spatial size
of 20×10, and configure the parallelism factor for SoftMax,
L/GNorm, SiLU and GeGLU to 5. HybridSA consumes the
majority of the resources as planned and the entire design is
bottlenecked by LUT and BRAM usages. It only uses 32%
of the DSP resources, due to the efficient DSP packing in hy-
bridSA. Meanwhile, DSP packing comes at a cost of increased
LUT usage, and it is nontrivial to further increase the spatial
size of hybridSA. Moreover, as presented in Section IV-C,
it is more important to allocate some hardware resources to
accelerate the nonlinear operators (the new bottleneck after the
main operator acceleration) and hide their execution latencies
to achieve the best overall performance.

V. RELATED WORK

A. FPGA-based Systolic Array Designs

The systolic array (SA) architecture, including output-
stationary (OS), weight-stationary (WS), and input-stationary
(IS) dataflows, is widely adopted to accelerate DNN infer-
ence, since its simple PE array design with local neighboring
communication can be easily scaled up with a high clock
frequency [14], [16], [26]–[28], [41]. Table V summarizes the
differences between our SDA and prior SA studies.

First, existing SA architectures are designed and optimized
only for a single main operator, either matrix multiplication
or convolution, and incurs extra overhead to convert the other
main operator into the one with native hardware support. In
contrast, our SDA accelerator supports the native execution of
both main operators in the same hybridSA hardware in the
MM-OS and CONV-WS dataflow modes, respectively.

Second, most existing SA architectures only support a
subset of nonlinear operators involved in CNN or Transformer-
based models. In contrast, our SDA accelerator accelerates a
variety of nonlinear operators, including SoftMax, L/GNorm,
SiLU and GeGLU, and carefully dataflows their execution with
hybridSA with minimal resource utilization.

Third, most existing SA architectures do not well support
DSP packing, especially the latest 4-bit DSP packing for

TABLE V: Comparison with prior FPGA-based SA studies

Prior
Works

Dataflow
Suppoted Operators

Precison DSP
Packing

Native Main
Operator Nonlinear Operator

OS WS CONV MM SoftMax LNorm GNorm SiLU GeGLU
[26] ✔ ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ W4A8 ✔
[27] ✔ ✗ ✗ ✔ ✔ ✔ ✗ ✗ ✗ W8A8 ✗

[28] ✔ ✗ ✔ ✗ ✗ ✗ ✗ ✗ ✗
W8A8

W16A16 ✗

[14] ✔ ✔ ✗ ✔ ✔ ✗ ✗ ✗ ✗ - ✗
[16] ✔ ✔ ✔ ✗ ✗ ✗ ✗ ✗ ✗ W8A8 ✔
SDA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ W4A8 ✔

convolutions. In contrast, our SDA accelerator well integrates
state-of-the-art DSP packing techniques [29]–[32] to im-
prove computation efficiency and carefully tunes the dataflow
switching to avoid data repacking overhead.

B. FPGA-based Accelerator for Large Language Models

More recently, a growing body of work has demonstrated
the potential of FPGAs in accelerating the emerging large
language model (LLM) inference [15], [26], [42]. The lat-
est FlightLLM [15] proposed a complete mapping flow that
integrates configurable sparse DSP chain, always-on-chip de-
coding, and length adaptive compilation for LLMs, which
achieved 6× higher energy efficiency and 1.8× better cost
efficiency against Nvidia V100 on the LLaMA-7B model.
However, existing FPGA-based accelerators for LLMs mainly
focus on accelerating language model inference based on
Transformers, and all of them are deployed on cloud FPGAs.
Different to previous work, our SDA is the first to explore
the potential of edge FPGAs to accelerate large low-bit stable
diffusion model and support both the attention-based Trans-
former blocks and the convolution-based ResNet blocks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented SDA, the first efficient
low-bit stable diffusion inference accelerator on edge FPGAs.
Our SDA accelerator proposes a high-performance hybridSA
architecture that supports native execution of convolution and
attention blocks with different quantization bit-widths, with
effective DSP packing techniques. Moreover, it implements
various resource-efficient nonlinear units, and efficiently inte-
grates them with hybridSA—which supports flexible dataflow
switching to generate friendly outputs for subsequent nonlin-
ear processing—to minimize their resource utilization while
well hiding their execution latencies via two-level pipelining.
Compared to the ARM CPU, our SDA achieves a speedup of
97.3× while maintaining comparable FID and CLIP scores on
the modern SD-v1.5 model. In future, we will focus on more
microarchitecture optimizations to achieve more competitive
performance compared to embedded GPUs and extend SDA
to support more applications and platforms.
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