
SA4: A Comprehensive Analysis and Optimization of
Systolic Array Architecture for 4-bit Convolutions

Geng Yang1, Jie Lei2, Zhenman Fang3, Jiaqing Zhang1, Junrong Zhang1, Weiying Xie∗1,Yunsong Li1
1Xidian University, 2University of Technology Sydney, 3Simon Fraser University

{gengyang, jgzhang 2, zhangunrong}@stu.xidian.edu.cn,
jie.lei@uts.edu.au, zhenman@sfu.ca, wyxie@xidian.edu.cn, ysli@mail.xidian.edu.cn

* indicates the corresponding author of the paper.

Abstract—Many studies have demonstrated that 4-bit precision
quantization can maintain accuracy levels comparable to those of
floating-point deep neural networks (DNNs). Thus, it has sparked
a keen interest in the efficient acceleration of such compressed
DNNs, especially 4-bit convolutions, on edge devices. However,
we observe that conventional systolic array (SA) architectures,
widely adopted for DNN acceleration, fail to fully exploit the high
computational density benefits of 4-bit DSP packing.

In this paper, we conduct the first comprehensive analysis of
the integration of modern DSP packing techniques (specifically,
4-bit fully DSP packing) into the 4-bit systolic array design
for convolutions. First, we introduce a row-temporal weight
stationary 4-bit SA dataflow that complements the loop execution
order inherent in 4-bit fully DSP packing in conventional SAs,
which is called BaseSA. Next, we analyze the performance and
resource efficiency of BaseSA, and identify two inefficiencies
in the integration: 1) excessive LUT resource utilization that
constraints the overall SA size, and 2) large latency gap to
the theoretical optimum, due to various stalls in data supplies.
To overcome these obstacles, we propose SA4: an HLS-based,
customizable, and ultra-efficient hierarchical SA architecture
optimized for 4-bit convolutions. The core unit in SA4 is a
delicately designed cost-effective SA unit (SAU), which 1) replaces
the costly buffer-based data suppliers for activations and weights
with shift-register-based ones, 2) replaces LUT-intensive FIFO
connections between SA PEs (processing elements) with registers,
and 3) replaces the finite state machines (FSM) and data
unpacking logic inside each PE with a global FSM inside each
SAU and a data splitter shared by a column of PEs. While such
an SAU can only support a small spatial size for an SA due
to its delicate design, we further scale it out using an array of
SAUs. Experimental results show that our proposed SA4 achieves
1153.2 GOPS on the AMD-Xilinx Ultra96-V2 FPGA, with a
13.8× increase in GOPS/DSP efficiency and a 49× increase in
GOPS/kLUTs efficiency compared to a straightforward SA and
4-bit DSP packing integration. Our SA4 project is open sourced
here: https://github.com/Michaela1224/SA4.

I. INTRODUCTION

The remarkable achievements of diverse DNNs—such as
CNNs [1], Transformers [2], and diffusion models [3]—in a
wide range of real-world applications [4], [5], have spurred
an increasing demand for their inference deployment on edge
devices, particularly embedded FPGAs [6], [7]. Within these
DNNs, the efficient hardware acceleration of the convolutional
layers has consistently garnered significant attention. To al-
leviate deployment challenges on resource-constrained edge
devices, the adoption of 4-bit quantization for both weight
and activation has proven to be an indispensable and effective
model compression technique [8]–[13]. This approach yields
negligible accuracy loss while simultaneously reducing mem-
ory footprint and increasing computational efficiency.

On one hand, the systolic array (SA) architecture, com-
prised of identical processing elements (PEs) with neighbor-to-
neighbor interconnects, has been widely utilized for hardware
acceleration of convolutional layers [14]–[20]. This architec-
tural choice facilitates natural data reuse by allowing local
data transfers between adjacent PEs, while also mitigating the
timing issues associated with massive parallel computations.

On the other hand, DSP packing is a well-established
method that is closely associated with model quantization.
It efficiently packs low bit-width multiplications into high
bit-width DSPs, significantly improving DSP efficiency on
FPGAs [21]. The latest work [22] leverages the window-
based multiply-accumulate computation rules of convolutions
to parallelize six 4-bit multiplications and two additions onto
a single DSP48E2, thus maximizing DSP computational effi-
ciency on the chip. This technique is called 4-bit fully DSP
packing (4bF packing) in this paper.

In this paper, we aim to address a key question: How to
combine the effective 4-bit fully DSP packing and widely
used systolic array architecture together in high-level synthesis
(HLS) to take advantage of both to accelerate 4-bit convolu-
tions used in CNNs, Transformers, and diffusion models?

Unfortunately, most existing SA architectures [14], [20],
[23]–[26] only support floating-point, 16-bit or 8-bit data
precisions, which neglect the exploration of the hardware
performance improvements brought by 4-bit quantization.
More importantly, the latest 4bF packing relies on a specific
loop execution order (detailed in Section II-A) that imposes
constraints on the SA dataflow mapping. To the best of our
knowledge, no existing SA-based work has implemented the
integration of this cutting-edge 4bF packing method.

To tackle this challenge, we first analyze the widely-used
weight stationary (WS) SA dataflow under the constraint of the
loop execution order for 4bF packing. Then, we introduce a
row-temporal WS SA dataflow tailored to 4bF packing, called
BaseSA, which aims to maximize the data reuse and minimize
the on-chip storage. However, after an in-depth analysis of this
straightforward integration, we identify the following resource
and performance inefficiencies in BaseSA.
i) LUT Resource Bottleneck: As will be analyzed in Sec-
tion III-C, for the BaseSA with 10×10 PEs, its DSP utilization
is only around 28% (on the AMD/Xilinx Ultra96-V2 FPGA);
but its LUT utilization is already 74%, which limits the size
of BaseSA. A detailed breakdown shows that, the buffer-
based multi-level IFM (input feature map) and weight data
loaders, in conjunction with FIFO interconnects between PEs,

https://github.com/Michaela1224/SA4

Pcin

A

B

Pcout

00 000 0 00 000 00 0 0 0 33 223 2 11 001 03 2 1 000 330 3 22 112 10 3 2 1 00 gg0 g gg ggg g0 g g g0 3 2 1 0 g g g11 001 0 gg ggg g1 0 g g gg 00g 0 00 000 0g 0 0 01 0 g g g 0 0 033 223 2 0 0 0 0 3 2 1 00 3 2 1 0 g g g1 0 g g g 0 0 03 2

00 000 0 00 000 00 0 0 0 33 223 2 11 001 03 2 1 0333 22 112 13 2 1 00 gg0 g gg ggg g0 g g g3 2 1 0 g g g 0 0 0 0 3 2 1 03 2 1 0 g g g

77 667 6 55 445 47 6 5 4 33 223 2 11 001 03 2 1 044 334 3 22 112 14 3 2 1 00 gg0 g gg ggg g0 g g g4 3 2 1 0 g g g11 001 0 gg ggg g1 0 g g gg 77g 7 66 556 5g 7 6 51 0 g g g 7 6 544 33 223 2 7 6 5 4 3 2 1 04 3 2 1 0 g g g1 0 g g g 7 6 54 3 211 001 0 gg ggg g1 0 g g gg 77g 7 66 556 5g 7 6 5gg ggg g 77 667 6g g 7 6 55 445 4 33 223 25 4 3 2g g 7 6 5 4 3 2gg 7 6 5 4 3 2 1 04 3 2 1 0 g g g1 0 g g g 7 6 54 3 21 0 g g g 7 6 5g g 7 6 5 4 3 2g

w3w2w1

aiai+1

w3aiw3ai+1+w2aiw2ai+1+w1aiw1ai+1

p4 p3 p2 p1

DSP48E2

+

intermediate output results of convolution row window

p4':p4 in time ti-1

p3':p3 in time ti-1Time
Input Act

(A)
p4 p3 p2 p1

Psum1
(p4’+p2)

Psum0
(p3’+p1)

t1 a2,a1 w1a2 w2a2+w1a1 w3a2+w2a1 w3a1 w3a2+w2a1 -

t2 a4,a3 w1a4 w2a4+w1a3 w3a4+w2a3 w3a3 w1a2+w3a4+w2a3 w2a2+w1a1+w3a3

t3 a6,a5 w1a6 w2a6+w1a5 w3a6+w2a5 w3a5 w1a4+w3a6+w2a5 w2a4+w1a3+w3a5

t4 a8,a7 w1a8 w2a8+w1a7 w3a8+w2a7 w3a7 w1a6+w3a8+w2a7 w2a6+w1a5+w3a7

Fig. 1: Working principle of 4bF packing [22].

collectively consume 59% of these LUT resources. Moreover,
to accommodate 4bF packing, each PE internally requires
additional data splitters and adders, resulting in increased LUT
consumption. As a result, the PE sets, each with its own finite
state machine (FSM), consume another 35% of those LUT
resources. As the SA size increases, LUT resource consump-
tion escalates, ultimately making LUTs the primary resource
bottleneck, overshadowing the expected DSP utilization.
ii) Large Latency Gap: Due to the reliance of the buffer-
based multi-level data loaders used in conventional SAs, which
require specific data reuse patterns to hide the data supply
latencies to feed the PEs, BaseSA exhibits notably poor latency
performance when adapting to our row-temporal WS dataflow.
Specifically, there is 1) a sequential data supply latency to
propagate the data onto a column of PEs, and 2) a Ping-
Pong buffer switching overhead. These result in a latency gap
exceeding 87% compared to the theoretical optimal latency.

To address the above challenges, we propose a cost-effective
SA unit (SAU). First, we replace the buffer-based multi-level
IFM and weight data loaders with the shift-register-based
IFM and weight fetchers. This not only addresses the latency
discrepancies as data can now be continuously supplied into
PEs independent of the data reuse patterns, but also reduces
the LUT usage by about 20%. Second, we replace the data
unpacking logic inside each PE with a shared data splitter that
is shared by a column of PEs, which reduces the LUT usage
by another 10%. Finally, we replace the FIFOs connecting
neighbor PEs with registers, and replace the FSMs within each
PE with a global FSM, which further reduces the LUT usage
by about 28%. In total, for a SA with 4 × 4 PEs, our SAU
reduces about 58% of the LUT usages compared to BaseSA,
eliminating the LUT resource bottleneck.

However, as will be analyzed in Section IV-A3, there is a
limitation of the spatial size of the SAU design, due to 1)
the need to efficiently support small spatial size convolutions,
and 2) DSP multiply-accumulate data overflow caused by our
shared data splitter design. To overcome this limitation, we
introduce a two-level hierarchical SA design, named SA4. SA4
organizes the original large SA into an array of SAU units,
each with an SAU size of 4×4, ensuring minimal latency gap
(0.3%) across various convolution spatial sizes.

Experimental results demonstrate that our proposed SA4

achieves 1153.2 GOPS for the 4-bit convolutions on AMD-
Xilinx Ultra96-V2 FPGA, with 13.8× higher GOPS/DSP
efficiency and 49× higher GOPS/kLUTs efficiency compared
to the straightforward integration of SA and 4bF packing. Our
case study for the 4-bit UltraNet [1] deployment using SA4
demonstrates that, on the same Ultra96-V2 FPGA, we achieve
a 3.7× FPS (frames per second) improvement compared to
the original UltraNet [1] implementation that uses one DSP to
pack two 4-bit multiplications, and a 2.3× FPS improvement
compared to an all-on-chip fully-pipelined UltraNet imple-
mentation [22] that uses the same 4bF packing.

In summary, this paper makes the following contributions:
1. A comprehensive analysis of resource and performance

inefficiencies in a straightforward integration of widely used
systolic array architecture and 4-bit fully DSP packing.

2. The first customizable, ultra-efficient FPGA-based systolic
array architectural template for 4-bit convolutions, with the
efficient integration of 4-bit fully DSP packing.

3. Superior performance and performance/resource efficiency
of SA4 over prior 4-bit convolution designs.

II. BACKGROUND AND RELATED WORK

A. 4-bit Fully DSP Packing for Convolution

To harness the advantages of 4-bit precision quantization
and translate them into tangible hardware performance en-
hancements, HiKonv [22] proposed a groundbreaking concept:
the mapping of six 4-bit multiplications and two additions of
one convolutional layer into a single AMD-Xilinx DSP48E2.
This achievement was accomplished by combining the 4-
bit DSP overpacking proposed by Liu et al. [27] with the
sliding-window-based multiply-accumulate rule designed for
convolutional layers. This technique, called 4-bit fully DSP
packing (4bF packing) in our paper, led to a substantial
improvement in on-chip DSP utilization.

As depicted in Fig. 1, each 4bF packing computation
involves sequentially reading two 4-bit unsigned input acti-
vations (ai, ai+1) along the column dimension (C) of input
feature map (IFM) and three 4-bit signed weights (w1, w2, w3)
along the column dimension (Kc) of the filter kernel. These
data are then meticulously packed and supplied to the
DSP48E2 for 18×27-bit multiplication. g stands for the guard

bits, set at a value of 3, to ensure output remains correct when
packing six 4-bit multiplications together for one DSP48E2.
Subsequently, the 44-bit output from the DSP is split into four
11-bit data (p1,p2,p3,p4), which are then reorganized to obtain
the final row windowed accumulation results for convolution.

The table in Fig. 1 provides an example of the data reor-
ganization process where the input activations a1 − a8 along
the column dimension under the same weights (w1,w2,w3).
Specifically, the current p1 and the previous step p3′ are accu-
mulated to produce one intermediate output result psum0 along
the column dimension (C) of the output feature map (OFM).
Similarly, the current p2 and the previous p4′ are accumulated
to obtain another intermediate output result psum1. To the
best of our knowledge, there is currently no work that has
seamlessly integrated this efficient 4-bit DSP packing method
into more versatile SA architectures.

B. Systolic Array for Convolution

The Systolic Array (SA) architecture, characterized by its
highly parallel and pipelined PEs operating in lock-step, wave-
like fashion, has gained significant attention for accelerating
convolution operations on FPGAs [14], [18], [20], [25], [26].
The traditional dataflow patterns in SA architecture [17] are
categorized into weight stationary (WS) [15], [28], output
stationary (OS) [19], [24], [25], and input stationary (IS)
[14], based on different loop unrolling strategies (i.e., data
reuse across different dimensions). State-of-the-art (SOTA)
FPGA-based SA framework—AutoSA [14]—explores space-
time transformation, array partitioning, latency hiding, and
SIMD vectorization to generate a SA design that minimizes
the latency within available resources. It has reported the best
performance results in automatic SA generation field [23].
However, most existing SA architectures only support floating-
point, 16-bit, or 8-bit data precision. Unlike previous work,
this paper delves into the efficient integration of 4-bit data
quantization and modern 4bF packing into the SA architecture
for the first time, and provides an ultra-efficient 4-bit SA
architecture customized for 4-bit convolutions.

III. BASESA WITH 4BF PACKING AND ITS LIMITATIONS

A. Dataflow Mapping Analysis

Different dataflow patterns essentially entail mapping data
reuse from different dimensions (i.e., fine-grained spatial
mapping) of one convolutional layer onto the locally con-
nected PEs. Moreover, specific dataflow patterns further de-
termine off-chip memory access to maximize tile data reuse
(i.e., coarse-grained temporal mapping) for IFM/Weight/OFM
loaded into on-chip buffers. The WS dataflow, characterized
by its small on-chip IFM buffer and continuous result output,
is extensively utilized in convolutional layers [14], [29], [30],
making it the starting point for our analysis. The explanations
of the variables involved are summarized in Table I.

Unlike the traditional WS-based dataflow, the 4bF pack-
ing introduces dependencies among input activations across
column dimension C shown in the table of Fig. 1, thereby
constraining the order of IFM data feeding into the SA. By

TABLE I: Design variable and explanation
Variables Explanation

N Number of input channels of IFM
M Number of output channels of OFM

(R,C) Number of rows/columns of IFM/OFM
(Kr ,Kc) Filter kernel size
(X ,Y) Size of systolic array
A 2 4-bit activations for one 4bF packing
W 3 4-bit filter weights for one 4bF packing

 1: for(r = 0; r < R; r++){

 2: for(ouf = 0; ouf < M/Y; ouf++){ // IFM reuse

 3： for(inf = 0; inf < Kr× N/X; inf++){

 4： for(k = 0; k < Kc/3; k++){

 5： bufW[Y][X][3]←readWeight(X,Y);

//read Y×X×3 weights (4-bit)

 6： for(c = 0; c < C/2; c++){ // row-temporal weight stationary

 7：#pragma HLS PIPELINE II=1

 8： bufI[X][2]←readInput(X,Y);

 //read X×2 input activations (4-bit)

 9： for(y = 0; y < Y; y++){

10: #pragma HLS UNROLL

11： for(x = 0; x < X; x++){

12: #pragma HLS UNROLL

13： (O2c,O2c+1)=SA-4bF-Packing (bufI[x], bufW[y][x])

// 4bF packing using 2 activations and 3 weights

14： }}//end of y loop

15： }//end of c loop

16: PartialSum(BufO[C/2×Y×2]);

17: }}//end of inf loop

18: writeOutput(BufO[C/2×Y×2]);

 // Obtain C×Y results of OFM

19: }}

spatial mapping

temporal mapping

PE mapping

Fig. 2: Pseudo code for row-temporal weight stationary (WS)
SA dataflow with 4bF packing.

carefully considering this constraint, we construct the row-
temporal WS SA dataflow as illustrated in Fig. 2. The spatial
size X and Y of SA correspond to the parallelism mapping
of IFM across the input channel dimension N and the output
channel dimension M of filter weights, respectively.

For fine-grained spatial mapping (line 9-14), Y × X × 3
weights (line 5) are loaded into Y × X PEs, with each PE
possessing 3 weights. X × 2 input activations (line 8) can be
reused by Y filter weights. Within each PE (line 13), 3 4-bit
weights and 2 4-bit input activations undergo the 4bF packing
shown in Fig. 1. For coarse-grained temporal mapping, the
weights loaded into each PE can be reused C/2 times (line
6). Finally, after Kr× (N/X)× (Kc/3) loop iterations (line
3-4), SA generates C × Y OFM results (line 18).

For each retrieval of C ×M OFM results (line 2-19), due
to the IFM reuse in line 2, only Kr×C×N input activations
of IFM and C×Y intermediate results of output feature maps
(line 16) need to be stored. We indicate that only Kr + 1
rows of IFM buffer with N channels are required to enable
the WS-based SA to operate at full capacity.

Meanwhile, due to the typically higher number of channels
in modern convolutions, setting parallelism on both input
and output channels ensures that the SA maintains high PE
utilization across convolutional layers with diverse spatial
sizes. Due to its row-wise weight stationary, this paper terms
this SA dataflow as the row-temporal WS dataflow.

B. BaseSA Architecture

Fig. 3 presents an overview of our BaseSA microarchitec-
ture, which is a straightforward integration of widely used SA

O
ff

-c
h

ip
 D

R
A

M PE11PE11

PE21PE21

L3

L2

L1

L2

L1

3-level Weight Loader
2-level IFM Loader

PE12PE12

PE22PE22

PE1Y

PE2YPE2Y

PEX1PEX1 PEX2PEX2 PEXYPEXY

Accum.Accum. Accum.Accum. Accum.Accum.

(a) BaseSA architecture

Next data loader

Prev data loader

BufBuf

keep

PE

Buf

keep

PE

Next data loader

Prev data loader

Buf

keep

PE

D
S

P
4

8
E

2

×

{...}{...}

rego

{...}

rega

regw

Oi-1,j from:PEi-1jW

A

from:PEij-1

PEij

Data Splitter

++

{...}
A

to:PEij+1

Oij to:PEi+1j

D
S

P
4

8
E

2

×

{...}

rego

{...}

rega

regw

Oi-1,j from:PEi-1jW

A

from:PEij-1

PEij

Data Splitter

++

{...}
A

to:PEij+1

Oij to:PEi+1j
(b) PE architecture

O
ff

-c
h

ip
 D

R
A

M PE11

PE21

L3

L2

L1

L2

L1

3-level Weight Loader
2-level IFM Loader

PE12

PE22

PE1Y

PE2Y

PEX1 PEX2 PEXY

Accum. Accum. Accum.

(a) BaseSA architecture

Next data loader

Prev data loader

Buf

keep

PE

D
S

P
4

8
E

2

×

{...}

rego

{...}

rega

regw

Oi-1,j from:PEi-1jW

A

from:PEij-1

PEij

Data Splitter

++

{...}
A

to:PEij+1

Oij to:PEi+1j
(b) PE architecture

Fig. 3: Overview of BaseSA architecture: straightforward
integration of widely used SA architecture and 4bF packing
in our 4-bit row-temporal WS dataflow.

architecture (e.g., AutoSA [14]) and 4bF packing in our 4-
bit row-temporal WS dataflow. Fig. 3(a) shows a typical SA
architecture designed for the WS dataflow (e.g., AutoSA [14]),
which is adapted for 4-bit data precision. It consists of multi-
level data loaders, including three-level weight loaders (L1,
L2, L3 highlighted in blue) and two-level IFM loaders (L1,
L2 highlighted in orange), along with identical PEs connected
locally to each other via FIFO buffers. The L1/L2/L3-level
data loader was inspired by a daisy-chain architecture previ-
ously employed [31]. As shown to the right of Fig. 3(a), they
selectively retain the data in a Buf required by associated PEs
from the input sequential data stream and pass the remaining
data to the adjacent data loader. Differing from the L3/L2-level
data loader, the L1-level data loader, directly connected to the
PEs, facilitates double buffering to overlap tiling data transfer
with PE computations.

The configuration of multi-level data loaders for both IFM
and weights within the SA architecture depends on whether
data reuse occurs among the X × Y PEs. As observed in
the fine-grained spatial mapping of the row-temporal WS
dataflow in Fig. 2, the parallel X × Y PEs possess their
own weights. Translating this insight into the corresponding
BaseSA architecture in Fig. 3(a) entails configuring 1 L3-level
loader, Y L2-level loaders, and X×Y L1-level loaders for the
weights to continuously feed 3 weights to each PE. Conversely,
X × 2 input activations can be reused across Y filter weights.
BaseSA therefore requires 1 L2-level IFM loader and X L1-
level IFM loaders to manage activations supply.

In Fig. 3(b), we delve into the intricate operations of each
PEij , where i and j denote the position of the PE within the
array. Each PEij receives 2 input activations (A) from the left
adjacent PEij−1 or the L1-level IFM loader, 3 weights (W)
from the L1-level weight loader, and the partial accumulated
result (Oi−1j) from the top adjacent PE. Processing begins
by dispatching A and W to the DSP48E2 for 18×27-bit
multiplication as shown in Fig. 1. Subsequently, the high-
bit-width result from the DSP48E2 undergoes data splitting
and reorganization within the data splitter as depicted in the
table of Fig. 1, resulting in two intermediate results along
the column dimension (C) of OFM. Finally, these two results
are accumulated and concatenated with Oi−1j , yielding the
output Oij . This final output is then directed into a FIFO for
transmission to PEi+1j .

(a) Resource utilization (c) Latency gap(b) LUT resource breakdown
BRAM DSP FF LUT0

1

2

3

4

5

6 104

12.5 100

50694 52165

R
es

ou
rc

e
C

os
t (

#n
um

s)
R

es
ou

rc
e

C
os

t (
#n

um
s)

(74%)(36%)

0

2

4

6

8

10 106

87%

87% 92%L
at

en
cy

 (c
yc

le
s)

L
at

en
cy

 (c
yc

le
s)

Measured Latency
Theoretical Latency
Measured Latency
Theoretical Latency

0

2

4

6

8

10 106

87%

87% 92%L
at

en
cy

 (c
yc

le
s)

Measured Latency
Theoretical Latency

35%

59%

5%

< 1% Accumulators

PE sets

IFM/Weight Loader
and FIFO

Others

(a) Resource utilization (c) Latency gap(b) LUT resource breakdown
BRAM DSP FF LUT0

1

2

3

4

5

6 104

12.5 100

50694 52165

R
es

ou
rc

e
C

os
t (

#n
um

s)

(74%)(36%)

0

2

4

6

8

10 106

87%

87% 92%L
at

en
cy

 (c
yc

le
s)

Measured Latency
Theoretical Latency

35%

59%

5%

< 1% Accumulators

PE sets

IFM/Weight Loader
and FIFO

Others

Fig. 4: (a) and (b) shows the resource utilization for BaseSA
in Fig. 3 with the sizes of 10×10. (c) shows latency gap with
different SA sizes (X×Y) on BaseSA. The latency test adopts
the convolution layer of the same input and output size (M =
N = 64, R = C = 56, Kr = Kc = 3).

C. Quantitative Resource and Performance Analysis

Through a quantitative analysis, we observe that the BaseSA
design, with a straightforward integration of 4-bit SA and 4bF
packing, performed significantly below expectations due to
LUT resource bottleneck and large latency gap.
i) LUT Resource Bottleneck. Fig. 4(a) provides an overview
of resource consumption for the maximum feasible BaseSA
size (10×10) deployable on the Ultra96-V2 edge device. Strik-
ingly, instead of being constrained by DSPs, the performance
is hampered by LUT resource consumption, accounting for
74% of the total. To decipher the underlying reasons for this
resource bottleneck, Fig. 4(b) offers further insight into LUT
consumption proportions across different modules. Notably,
more than half of resource consumption (59%) is attributed to
multi-level data loaders and FIFO interconnection overhead.

A closer examination of BaseSA’s microarchitecture, as
depicted in Fig. 3(a), reveals that each PE and single-
level (L1/L2/L3) data loader is instantiated separately, each
equipped with its independent FSM. This approach results in a
substantial resource overhead in LUT, particularly owing to the
extensive instantiation of multi-level data loaders, including
X × Y L1-level weight loaders. Furthermore, costly FIFOs
are employed for local interconnections between neighbor
PEs as well as across multi-level data loaders, compounding
LUT resource consumption. Such a heavy LUT resource
overhead ultimately limits the ability to incorporate more PEs,
constraining the SA size on edge devices.

On the other hand, despite leveraging DSP48E2 to accom-
modate six 4-bit multiplications and two additions, PE sets still
consume 35% of the LUT resources shown in Fig. 4(b). This
is due to the additional data splitter and adders, as illustrated in
Fig. 3(b), which are employed to obtain the final results of the
sliding window calculations. Intuitively, the LUT consumption
by PE sets increases linearly as the SA size scales up.
ii) Large Latency Gap. Fig. 4(c) provides a comprehensive
view of the latency performance across various SA sizes
under the same convolution layer. An alarming observation is
the considerable gap between actual and theoretical latency,
surpassing an unacceptable 87% gap. The primary reason
behind this phenomenon is discontinuous data supply to the
PEs by BaseSA’s multi-level data loaders.

As shown in Fig. 5, due to the neighbor-to-neighbor com-

PE11PE11
A21 A11

PE21PE21
A21A21 A12A12

PE31PE31
A21A21 A13A13 PE31
A21 A13

PEX1PEX1
A21A21 A1XA1X PEX1
A21 A1X PEX1
A21 A1X

A11,A12,…,A1X,A21,A22,…,A2X,……

t1

t2

t3

tX

tX+1

tX+2

tX+3

tX+4

double buffer switching
overhead: s cycles

1 cycle feeds data to PE

X+s cycles idle

1 X+s 1 1 X+s X+s

1 cycle feeds data to PE

X+s cycles idle

1 X+s 1 1 X+s X+s

Fig. 5: Latency gap due to the L1-level IFM loader in Fig. 3(a).

munication pattern in SAs, it takes X cycles to propagate the
input (IFM) data to the L1-level data loader for the bottom
PE. That is, every L1-level data loader takes X cycles to load
one data for the corresponding PE computation. Achieving
continuous data supply to the PEs with double buffering in
the L1-level data loader in Fig. 3(a) necessitates that current
data stored in the buffer is reused within the PE for a duration
longer than the time required to load the next tile of data.
However, in the row-temporal WS dataflow, there is no data
reuse during a single load of the input activations loaded into
the L1-level IFM loader buffer. Moreover, the latency overhead
induced by double buffer switching, approximately s clock
cycles, is an inherent challenge that cannot be mitigated.

Although there is C/2 reuse for single-load weights (line 6
in Fig. 2), the time needed to transfer X ×Y weights W into
the buffer by the L1-level weight loaders increases with the SA
size. This makes it challenging to hide the weight data supply
latency, particularly when processing convolutions with small
spatial dimensions (i.e., smaller C). Detailed analysis will be
provided in Sections IV-A3 and V-B.

IV. DESIGN AND IMPLEMENTATION OF SA4

To address the LUT resource bottleneck and the large
latency gap in BaseSA presented in Section III-C, we first
present our proposed cost-effective SA unit (SAU) for the
efficient integration of 4-bit SA and 4bF packing, and analyze
the constraints on the SAU size in Section IV-A. Next, in
Section IV-B, we scale out our SA4 design by introducing
a two-level hierarchical architecture that uses an array of
SAU units to achieve near-theoretical latency across various
convolutional spatial sizes.

A. Cost-Effective SAU

Fig. 6 represents the microstructure of our proposed SAU,
comprising of shift-register-based IFM fetcher and weight
fetcher, X × Y identical PEs with 4bF packing, and Y data
splitters shared among each column of PEs. Firstly, moving
away from the multi-level data loaders in BaseSA, the pro-
posed IFM/weight fetcher is based on the shift-register control
and ensures a continuous supply of weights and activations
without specific data reuse constraints, thus achieving close
to theoretical latency while consuming low LUT resources.
Secondly, instead of configuring one data splitter and adders
within each PE in Fig. 3, each column of PEs shares one data
splitter, which is responsible for splitting and reorganizing the
high-bit-width results of DSP48E2. Thirdly, without separately

PE11 PE12PE12PE11 PE12 PE13PE13 PE1YPE1Y

PE21PE21 PE22PE22 PE23PE23 PE2YPE2Y

PE31PE31 PE32PE32PE31 PE32 PE33PE33 PE3YPE3Y

PEX1PEX1 PEX2 PEX3PEX3 PEXY

Weight Fetcher

IF
M

 F
et

ch
er

Data Splitter

D
S

P
4

8
E

2

×

{...}{...}
regc

{...}

rega

+

regw

Pi-1j

Wij

A
from:PEij-1

Pij A
to:PEij+1

PEij

from:PEi-1j

to:PEi+1j

D
S

P
4

8
E

2

×

{...}
regc

{...}

rega

+

regw

Pi-1j

Wij

A
from:PEij-1

Pij A
to:PEij+1

PEij

from:PEi-1j

to:PEi+1j

…

…

…

Fig. 6: Hardware structure of proposed cost-effective SAU.

PE11 PE12 PE13 PE14PE13 PE14PE11 PE12 PE13 PE14

PE21 PE22 PE23 PE24PE23 PE24PE21 PE22 PE23 PE24

PE31 PE32 PE33 PE34PE33 PE34PE31 PE32 PE33 PE34

PE41 PE42 PE43 PE44PE43 PE44PE41 PE42 PE43 PE44

① read 4 W (Wx1-Wx4) ② fetch 4 W to PE11-PE44

③ down-right

 shift

PE11 PE12 PE13 PE14

PE21 PE22 PE23 PE24

PE31 PE32 PE33 PE34

PE41 PE42 PE43 PE44

① read 4 W (Wx1-Wx4) ② fetch 4 W to PE11-PE44

③ down-right

 shift

① read 4 A（Ax1-Ix4）

③ down-right

shift

PE21PE21

PE11PE11

PE31PE31

PE41PE41

② fetch 4 A

to PE11-PE41

(a) IFM fetcher (b) Weight fetcher

Fig. 7: Hardware structure of IFM fetcher and weight fetcher
with X = 4 and Y = 4 as an example. The ten boxes refer
to the data registers.

instantiating each module with FIFO connection in BaseSA,
a global FSM and the register-based local interconnection are
utilized to oversee the entire structure.

1) IFM Fetcher: The IFM fetcher, shown in Fig. 7(a), is
tasked to continuously supply the X parallel input data A to
PE11 − PEX1 in a systolic-like skewed mode. As depicted
in the figure, we use X = 4 as an example to demonstrate the
working mechanism of this module. In each cycle, four packed
input data A (Ax1−Ax4) along input channel dimension (N)
are firstly cached into the top 4 registers. Then, the four A
from the rightmost four registers are fed into the local registers
within PE11−PE41, while the previous data in PE11−PE41

are passed rightwards along the rows of SA. Finally, the values
in the ten registers are shifted to the lower-right direction, and
new packed input data (Ax+1,1−Ax+1,4) is received from the
top. Fig. 8(a) illustrates the data storage view of 10 registers
and PE registers in the first four clock cycles. Instead of the
two-level IFM loader in BaseSA with FIFO interconnections
shown in Fig. 3, our shift-register-based IFM fetcher not only
significantly saves LUT resource overhead, but also ensures
continuous supply of input activations to the leftmost PEs,
even when there is no data reuse for a single feed.

2) Weight Fetcher: As shown in Fig. 7(b), the weight
fetcher has a similar structure to the IFM fetcher, with the
addition of X selectors to ensure that the X × Y W are
promptly fetched into the local registers of PE11-PEXY .
We take X = 4, Y = 4 as an example to explain how this
module works. Fig. 8(b) illustrates the variation in cached
values within the local registers of the weight fetcher over
the first C/2+1 clock cycles. In the first 4 clock cycles, each

cycle 1

A11A12A13A14

000

00

0

A11

cycle 1

A11A12A13A14

000

00

0

A11

cycle 2

A21A22A23A24

A12A13A14

00

0

A21

cycle 2

A21A22A23A24

A12A13A14

00

0

A21 A11

A12

cycle 3

A31A32A33A34

A22A23A24

A13A14

0

A31 A11A21

A12A22

A13

cycle 4

A41A42A43A44

A32A33A34

A23A24

A14

A41

cycle 4

A41A42A43A44

A32A33A34

A23A24

A14

A41 A21A31

A22A32

A23

cycle 4

A41A42A43A44

A32A33A34

A23A24

A14

A41 A21A31

A22A32

A23

A11

A12

A13

A14

……cycle 1

A11A12A13A14

000

00

0

A11

cycle 2

A21A22A23A24

A12A13A14

00

0

A21 A11

A12

cycle 3

A31A32A33A34

A22A23A24

A13A14

0

A31 A11A21

A12A22

A13

cycle 4

A41A42A43A44

A32A33A34

A23A24

A14

A41 A21A31

A22A32

A23

A11

A12

A13

A14

……
(a) Data storage view of the first 4 clock cycles of 10 registers in IFM fetcher (Fig.7(a)) and local registers (right) in each PE

cycle 1

W11W12W13W14

000

00

0

W11 W21W22W23W24

W12W13W14

00

0

W11W21W22W23W24

W12W13W14

00

0

W11 W21

W12

cycle 2

W21W22W23W24

W12W13W14

00

0

W11 W21

W12

cycle 2

W31W32W33W34

W22W23W24

W13W14

0

W11W31W32W33W34

W22W23W24

W13W14

0

W11 W21

W12

cycle 3

W31

W22

W13

W31W32W33W34

W22W23W24

W13W14

0

W11 W21

W12

cycle 3

W31

W22

W13

W41W42W43W44

W32W33W34

W23W24

W14

W11 W21

W12

cycle 4

W31

W22

W13

W41

W32

W23

W14

W41W42W43W44

W32W33W34

W23W24

W14

W11 W21

W12

cycle 4

W31

W22

W13

W41

W32

W23

W14

W42W43W44

W33W34

W24

W11 W21

W12

cycle 5

W31

IW22

W13

W41

W32

W23

W14

W42

W33

W24

W42W43W44

W33W34

W24

W11 W21

W12

cycle 5

W31

IW22

W13

W41

W32

W23

W14

W42

W33

W24

W43W44

W34

W11 W21

W12

cycle 6

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34

W43W44

W34

W11 W21

W12

cycle 6

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W11 W21

W12

cycle 7

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34W44

W11 W21

W12

cycle 7

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W51 W21

W12

cycle C/2+1

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

……

W51W52W53W54

cycle 1

W11W12W13W14

000

00

0

W11 W21W22W23W24

W12W13W14

00

0

W11 W21

W12

cycle 2

W31W32W33W34

W22W23W24

W13W14

0

W11 W21

W12

cycle 3

W31

W22

W13

W41W42W43W44

W32W33W34

W23W24

W14

W11 W21

W12

cycle 4

W31

W22

W13

W41

W32

W23

W14

W42W43W44

W33W34

W24

W11 W21

W12

cycle 5

W31

IW22

W13

W41

W32

W23

W14

W42

W33

W24

W43W44

W34

W11 W21

W12

cycle 6

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W11 W21

W12

cycle 7

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W51 W21

W12

cycle C/2+1

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

……

W51W52W53W54

(b) Data storage view of the first C/2 +1 clock cycles of 10 registers in weight fetcher (Fig.7(b)) and local registers (right) in each PE

cycle 1

W11W12W13W14

000

00

0

W11 W21W22W23W24

W12W13W14

00

0

W11 W21

W12

cycle 2

W31W32W33W34

W22W23W24

W13W14

0

W11 W21

W12

cycle 3

W31

W22

W13

W41W42W43W44

W32W33W34

W23W24

W14

W11 W21

W12

cycle 4

W31

W22

W13

W41

W32

W23

W14

W42W43W44

W33W34

W24

W11 W21

W12

cycle 5

W31

IW22

W13

W41

W32

W23

W14

W42

W33

W24

W43W44

W34

W11 W21

W12

cycle 6

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W11 W21

W12

cycle 7

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

W51 W21

W12

cycle C/2+1

W31

W22

W13

W41

W32

W23

W14

W42

W33

W24

W43

W34 W44

……

W51W52W53W54

(b) Data storage view of the first C/2 +1 clock cycles of 10 registers in weight fetcher (Fig.7(b)) and local registers (right) in each PE

Fig. 8: Data supply from IFM fetcher (a) and weight fetcher (b) to each PE within proposed SAU with X = 4 and Y = 4.

4 W (Wy1−Wy3) are read into the topmost 4 registers in each
clock cycle. In the first 7 (i.e., X + Y − 1) clock cycles, the
data from the rightmost side, highlighted in orange, is loaded
into PE11-PE44 through selectors (highlighted in red).

Since a single load of weights can be reused for a row of
input activations (shown in line 6 of Fig. 2), the weight values
in the local registers of each PE remain stationary from cycle 7
to cycle C/2. In cycle C/2+1, the operations from cycle 1 to
cycle 7 are repeated to refresh buffered weight values within
each PE. Note that we do not have to set aside specific time for
loading weights. Our design makes the most out of the systolic
array’s startup rules. During the initial X+Y −1 clock cycles
of PE computation, we concurrently fill in the required weight
data. This simple but effective design achieves a continuous
weight supply, eliminating the need for three-level weight
loaders and their extensive LUT resource overhead in BaseSA.

3) Constraints on SAU Size: Revisiting the weight supply
scheduling of the weight fetcher in Fig. 8(b), we observe that
it always requires Y cycles (from cycle 1 to cycle 4 in our
example) to load the Y × X W into the top four registers
(on the left of the figure) for processing a row (C/2) of input
activations. That is, it needs to meet the following constraints
to ensure the continuous weight supply to each PE in our row-
temporal WS dataflow, i.e., hiding the Y cycles weight load
latency by the C/2 cycles computation latency:

Y ≤ C/2 (1)

To make sure small spatial-sized convolutions (i.e., smaller C,
as small as C = 8) can sustain continuous data supply to each
PE, a small Y ≤ 4 is needed.

Meanwhile, when utilizing the 4bF packing, DSP48E2 in
each PE (Fig. 6) experiences guard bit (g in Fig. 1) fail-
ures when performing more than four consecutive multiply-
accumulate operations, resulting in data overflow. That is, with
a shared data splitter by a column of PEs, the row size of SAU
is limited to:

X ≤ 4 (2)

O
ff

-c
h

ip
 D

R
A

M

Weight
Distributor

Weight
Buffer

IF
M

D
is

tr
ib

u
to

r

IF
M

C
o

n
st

r
u

ct
o
r

4×4
SAU22

4×4
SAU22

4×4
SAU12

4×4
SAU12

4×4
SAU11

4×4
SAU11

4×4
SAU21

4×4
SAU21

Array

Accum.

Array

Accum.
Array
Accum.
Array
Accum.

Row-cached
Accumu.

O
ff

-c
h

ip
 D

R
A

M

Weight
Distributor

Weight
Buffer

IF
M

D
is

tr
ib

u
to

r

IF
M

C
o

n
st

r
u

ct
o
r

4×4
SAU22

4×4
SAU12

4×4
SAU11

4×4
SAU21

Array

Accum.
Array
Accum.

Row-cached
Accumu.

SAU11SAU11 SAU12SAU12

SAU21SAU21 SAU22SAU22

IFM 8×8×3×3 filter weights

4A

4W

(A: two 4-bit activations)

(W: three 4-bit weights)

(a) Two-level hierarchy architecture (b) Data distribution view in IFM/Weight Distributor

Fig. 9: Overall architecture of SA4. SA size with X = 8 and
Y = 8 is provided as an example.

Note if an SAU with the size of X > 4 is employed, it has to
equip an independent data splitter within each PE like BaseSA
in Fig. 3(b), leading to extra LUT resource overhead.

Combining the constraints in Eqs. 1 and 2, we decide to
use X = Y = 4 in our SAU design.

B. Two-Level Hierarchical Architecture

To address the size limitation of our SAU unit, we propose
a two-level hierarchical SA design as illustrated in Fig. 9(a).
The 2D array comprises (X/4) × (Y/4) parallel SAUs,
with an SAU size of 4 × 4. Within each SAU, its PEs are
interconnected with economical registers, forming the L1-
level hierarchy. The L2-level hierarchy consists of the IFM
constructor, IFM/weight distributor, SAU sets, and two-level
accumulators, interconnected with each other via FIFOs.

1) IFM Constructor: The IFM constructor in Fig. 9 is
responsible for continuously reading high-bit-width input acti-
vations (maximum available bit-width of the device, e.g., 256
bits), packed along input channel dimension, from off-chip
DRAM. It then splits the high-bit-width data into (X×2×4)-
bit data packets to match the 2D array’s size. Finally, we
maintain this bit-width and utilize the equipped Kr + 1
rows of input activation cache with N channels to generate
the continuous data stream, which adapts to sliding window
computation of the convolution layer and then feeds into the
IFM distributor. According to our row-temporal WS dataflow,

the raw IFM data (without any off-chip preprocessing) only
need to be read from off-chip once and then all output results
for OFMs can be calculated on-chip in a pipelined fashion.

2) IFM/Weight Distributor: The IFM distributor is re-
sponsible for distributing the constructed input data into the
X/4 × Y/4 SAU sets in parallel shown in Fig. 9(b). Taking
X = 8 and Y = 8 as an example, the first 4 out of 8 As along
the input channel are fed to SAU11 and SAU12 in the same
row, while SAU21 and SAU22 receive the remaining 4 As.
Similar to the IFM distributor, the first 4 out of 8 filters are
fed to SAU11 and SAU21 in the same column, while SAU12

and SAU22 receive the remaining 4 filters. Note each SAU
only receives the corresponding channel inside a filter instead
of an entire filter to match the IFM data.

3) Two-Level Accumulator: To adapt our two-level hier-
archical architecture, this module consists of an array ac-
cumulator (array accumu.) and a row-cached accumulator
(row-cached accumu.) in Fig. 9(a). The array accumulator
accumulates the partial results from the data splitter within
SAUs along the column direction, with four partial results in
four columns of each SAU, and then feeds them into the row-
cached accumulator. The row-cached accumulator receives
Y × 2 partial results from the 2D array, and it performs
Kr ×N/X ×Kc/3 accumulations by a row cache to obtain
C × Y OFMs shown in Fig. 2. Without waiting for the 2D
array to complete all calculations, this module can produce the
final results of OFM in a row-granularity pipelined fashion.

V. EVALUATION

A. Experimental Setup

Our SA4 architecture is synthesized and implemented us-
ing AMD-Xilinx Vitis HLS and Vivado tools. For hardware
performance evaluation, we employ the AMD-Xilinx Ultra96-
V2 embedded FPGA board, which is equipped with 70,560
LUTs and 360 DSP slices. Note that all the designs operate
at a frequency of 300 MHz, and hardware resource utilization
data is extracted from the Vivado post-implementation report.

B. Comparison to 4-bit BaseSA

We compare our SA4 with BaseSA design described in
Section III, which is a straightforward integration of the widely
used SA architecture and 4bF packing. For a quantitative and
step-by-step analysis of the proposed architecture’s advan-
tages, in addition to BaseSA, we replaced the 2-level IFM
loaders of BaseSA with our IFM fetcher, denoted as BaseSA-
IFM Fetcher. Building on BaseSA-IFM Fetcher, we further
replaced the 3-level weight loaders of BaseSA with our weight
fetcher, denoted as BaseSA-IFM/W Fetcher. Finally, we apply
the two-level hierarchy concept to divide the original SA with
a size of X × Y into 4 × 4 PE sets, referred to as BaseSA-
IFM/W Fetcher-Hier. All BaseSA variants retain FIFO local
interconnects and independent FSM control for each PE. That
is, the main difference between BaseSA-IFM/W Fetcher-Hier
and our SA4 is that SA4 uses registers for PE connections and
a global FSM inside one SAU.

4,719,483

32 32 128 16 16 256 8 8 512
3

4

5

6

7

8

9

10

11

12

L
a
te

n
c
y
(c

y
c
le

s)

10
5

BaseSA
BaseSA-IFM Fetcher
BaseSA-IFM/W Fetcher

BaSA-IFM/W Fetcher-Hier

Our SA4
Theoretical Latency

Fig. 10: Latency performance for different convolution sizes
(M = N ,Kr = Kc = 3) with the same SA size of 8× 8.

1) Comparison for Latency: As shown in Fig. 10, BaseSA
exhibits a significant gap between measured and theoretical
latency, with errors exceeding 92% with SA size of 8× 8. As
described in Section III-C, this is due to L1-level IFM loader,
which relies on data reuse within the double buffer to hide data
loading latency. For the row-temporal WS dataflow, there is no
data reuse in the buffer for a single IFM data load, resulting
in non-continuous IFM data being supplied to the PEs shown
in Fig. 5. That is, the multi-level data loading mechanism in
BaseSA becomes ineffective when there is no data reuse for
the cached data in a single load.

BaseSA-IFM Fetcher only replaces the original 2-level IFM
loader with the proposed IFM fetcher and remains 3-level
weight loaders. As shown in Fig. 10, the latency is significantly
improved for large convolutional spatial sizes (32 × 32 and
16 × 16), with the gap between measured and theoretical
latency reduced to less than 38%.

With the adoption of our weight fetcher, the latency over-
head incurred by double buffer switching in the L1-level
weight loader is further mitigated, reducing the latency gap of
BaseSA-IFM/W Fetcher to 0.3% for large convolutional spatial
sizes (32 × 32 and 16 × 16). However, as the spatial size of
the convolutional layer decreases, the latency error deteriorates
again. In the case of a size of 8 × 8 × 512, the latency
gap is at 50% for BaseSA-IFM/W Fetcher. The reason for
this phenomenon is similar to what was discussed in Section
IV-A3. The 3-level weight loader leads to discontinuities in
weights updates within PEs when the SAU spatial size Y = 8
is larger than the column size (C/2 = 8/2 = 4) of the
convolutional layer.

To address this problem, we adopt the proposed two-level
hierarchical strategy to split the large SA into a parallel
execution set of 4 × 4 PEs in BaseSA-IFM/W Fetcher-Hier.
With this optimization, the latency performance of small-sized
convolutions is also ensured.

Finally, with the integration of the proposed IFM fetcher,
weight fetcher, and the hierarchical design with 4 × 4 SAU
sets, the proposed SA4 achieves a negligible latency gap to the
theoretical optimum with various convolutional spatial sizes.

(a) LUT resource utilization for

4×4 SA

(b) LUT resource utilization with

different SA size

0

2

4

6

8
10

4

BaseSA
Our SA4

-58%

-59%

-67%

failed
94%

80%
70%

42%

100%

L
U

T
 C

o
st

(#
n

u
m

s)
L

U
T

 C
o
st

(#
n

u
m

s)

0

2000

4000

6000

8000

10000

12000
L

U
T

 C
o
st

(#
n

u
m

s)

Fig. 11: LUT resource utilization comparison.

TABLE II: Overall performance comparison
Architecture LUT DSP GOPS GOPS/DSP GOPS/kLUTs

BaseSA
(10 × 10)

52,165
(74%)

100
(28%)

26.0 0.26 0.5

Our SA4
(12 × 12)

24,239
(34%)

144
(40%)

521.8 3.62 21.5

Our SA4
(16 × 20)

47,060
(67%)

320
(89%)

1153.2 3.60 24.5

2) Comparison for Resource Consumption: Fig. 11 (a)
highlights the resource advantage of our SA4 by illustrating
the step-by-step optimization of the baseline resource-intensive
designs in 4×4 BaseSA. Firstly, when replacing the 1 L2-level
and X L1-level IFM loaders in BaseSA with the proposed
IFM fetcher, the LUT consumption of BaseSA-IFM Fetcher
decreases by 6%. Second, when further replacing the Y L2-
level and X × Y L1-level weight loaders in BaseSA with the
proposed weight fetcher, the LUT consumption of BaseSA-
IFM/W Fetcher significantly decreases, with another reduc-
tion of 14%. Third, when the column-shared data splitter is
enabled, the resource consumption of BaseSA-IFM/W Fetcher-
Shared Splitter is further reduced by another 10%. Finally,
when our SA4 further employs a global FSM within the 4×4
SAU set and facilitates communication between PEs through
cost-effective registers, the resource consumption for the 4×4
SA4 is further reduced by another 28%. In the end, our SA4
only consumes 42% LUTs of the original BaseSA.

Fig. 11(b) further presents the LUT resource utilization
of BaseSA and the proposed SA4 with different SA sizes.
Compared to the original BaseSA, our two-level hierarchical
architecture based on cost-effective SAU sets achieves a reduc-
tion of more than 58% in overall LUT resource consumption.
It is noteworthy that the 12× 12 BaseSA cannot be deployed
on the Ultra96-V2 due to excessively high LUT consumption.

3) Comparison for GOPS: Table II displays the maximum
SA size (X × Y in the first column) and the corresponding
performance achieved on Ultra96-V2. The performance of
BaseSA is bottlenecked by LUT resource consumption and
large latency gap, as described in the above subsections.
With the similar SA size, our SA4 (12×12) achieves a 20×
improvement in GOPS compared to BaseSA (10×10), with
43× higher GOPS/kLUTs efficiency. Finally, our SA4 with
size of 16×20 achieves 1153.2 GOPS with 89% DSP resource
utilization, which achieves 13.8× higher GOPS/DSP efficiency
and 49× higher GOPS/kLUTs efficiency compared to BaseSA.
Note additions in data splitters shown in Fig. 6 and Fig. 3(b)
and accumulators shown in Fig. 9 are performed using LUTs.

TABLE III: Performance result of board-level deployment for
CNN model(AMD-Xilinx Ultra96-V2 with batch size=1)

Architecture IoU Freq
(MHz) LUT DSP FPS FPS/kLUTs FPS/DSP

UltraNet [1]

0.656

- 43k
(61%)

360
(100%) 248 5.8 0.7

UltraNet-HiKonv [22] - 48k
(68%)

327
(91%) 401 8.4 1.2

UltraNet-SA4 300 37k
(52%)

252
(70%) 909 24.6 3.6

C. CNN Deployment with SA4

Table III presents the performance results of CNN model
deployment based on the proposed SA4. The based model
is the 4-bit UltraNet [1] for object detection, which includes
9 convolutional layers and 4 max-pooling layers. The spatial
size of 9 convolutions ranges from 160 × 320 to 10 × 20.
In addition to SA4 with a size of 16 × 8, we also included
the first convolution with 8-bit input precision for the original
RGB image, max-pooling, and non-linear units with fused
BatchNorm in Ultra96-V2. Compared to the original UltraNet
implementation [1] that uses one DSP for packing two 4-bit
multiplications, SA4 achieves a 3.7× FPS improvement with
4.2× higher FPS/kLUTs and 5.1× higher FPS/DSP efficiency.
Compared to the all-on-chip fully-pipelined structure imple-
mentation that uses the same 4bF packing [22], SA4 achieves a
2.3× FPS improvement, with 2.9× higher FPS/kLUTs and 3×
higher FPS/DSP efficiency. Note none of these prior studies
integrate 4bF packing into SA architectures as we did. In
addition, our proposed SA4 also enables layer-wise reuse to
make it more versatile for larger CNN models, which is also
the focus of our future work.

VI. CONCLUSION

Extensive research has confirmed that 4-bit quantization
precision strikes the optimal balance between DNN model
accuracy and hardware performance. In this paper, we have
presented the first comprehensive analysis and optimizations
to efficiently integrate the latest 4-bit fully DSP packing
technique into the widely used systolic array architectures
to accelerate 4-bit convolutions in HLS. More specifically,
we have designed and implemented the cost-effective SA
unit (SAU) to address the LUT resource bottleneck and
large latency gap, and further scaled it out using a two-level
hierarchical SA architecture. Deployed on the AMD-Xilinx
Ultra96-V2 FPGA board, our SA4 achieves 1153.2 GOPS for
4-bit convolutions, exhibiting 13.8× higher GOPS/DSP and
49× higher GOPS/kLUTs efficiency over a straightforward
SA and 4bF packing integration. Our case study deployed for
the 4-bit UltraNet using SA4 also demonstrates a 2.3× to 3.7×
FPS improvement over prior studies.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-
ence Foundation of China under Grant 62071360, 62322117,
62371365, and the National Key R&D Program of China under
Grant 2023YFE0208100.

REFERENCES

[1] K. Zhang, J. Guo, B. Song, W. Zhang, and Z. Bao, “Ultranet: A
fpga-based object detection for the dac-sdc 2020,” 2020. [Online].
Available: https://github.com/heheda365/ultranet

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[3] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control
to text-to-image diffusion models,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2023, pp. 3836–3847.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[5] A. Sohrabizadeh, J. Wang, and J. Cong, “End-to-end optimization of
deep learning applications,” in Proceedings of the 2020 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, 2020,
pp. 133–139.

[6] C. Hao, J. Dotzel, J. Xiong, L. Benini, Z. Zhang, and D. Chen, “Enabling
design methodologies and future trends for edge ai: Specialization and
codesign,” IEEE Design & Test, vol. 38, no. 4, pp. 7–26, 2021.

[7] P. Xu, X. Zhang, C. Hao, Y. Zhao, Y. Zhang, Y. Wang, C. Li, Z. Guan,
D. Chen, and Y. Lin, “Autodnnchip: An automated dnn chip predictor
and builder for both fpgas and asics,” in Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2020, pp. 40–50.

[8] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision. Chapman and Hall/CRC, 2022,
pp. 291–326.

[9] Z. Liu, K.-T. Cheng, D. Huang, E. P. Xing, and Z. Shen, “Nonuniform-
to-uniform quantization: Towards accurate quantization via generalized
straight-through estimation,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2022, pp. 4942–4952.

[10] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and
D. S. Modha, “Learned step size quantization,” arXiv preprint
arXiv:1902.08153, 2019.

[11] X. Zhao, Y. Wang, X. Cai, C. Liu, and L. Zhang, “Linear symmetric
quantization of neural networks for low-precision integer hardware,” in
International Conference on Learning Representations, 2020. [Online].
Available: https://openreview.net/forum?id=H1lBj2VFPS

[12] K. Yamamoto, “Learnable companding quantization for accurate low-
bit neural networks,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2021, pp. 5029–5038.

[13] Z. Bao, K. Zhan, W. Zhang, and J. Guo, “Lsfq: A low precision full
integer quantization for high-performance fpga-based cnn acceleration,”
in 2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL
CHIPS). IEEE, 2021, pp. 1–6.

[14] J. Wang, L. Guo, and J. Cong, “Autosa: A polyhedral compiler for high-
performance systolic arrays on fpga,” in The 2021 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, ser. FPGA ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
93?104.

[15] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings of the
44th annual international symposium on computer architecture, 2017,
pp. 1–12.

[16] R. Xu, S. Ma, Y. Wang, and Y. Guo, “Cmsa: Configurable multi-
directional systolic array for convolutional neural networks,” in 2020
IEEE 38th International Conference on Computer Design (ICCD).
IEEE, 2020, pp. 494–497.

[17] A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability of
dnn accelerators using scale-sim,” in 2020 IEEE International Sympo-
sium on Performance Analysis of Systems and Software (ISPASS), 2020,
pp. 58–68.

[18] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC), 2017, pp. 1–6.

[19] S. Das, A. Roy, K. K. Chandrasekharan, A. Deshwal, and S. Lee, “A
systolic dataflow based accelerator for cnns,” in 2020 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2020, pp. 1–5.

[20] S. Basalama, A. Sohrabizadeh, J. Wang, L. Guo, and J. Cong, “Flexcnn:
An end-to-end framework for composing cnn accelerators on fpga,”
ACM Transactions on Reconfigurable Technology and Systems, vol. 16,
no. 2, pp. 1–32, 2023.

[21] T. Han, T. Zhang, D. Li, G. Liu, L. Tian, D. Xie, and Y. S. Shan,
“Convolutional neural network with int4 optimization on xilinx devices,”
Xilinx White Paper, WP521, 2020.

[22] X. Liu, Y. Chen, P. Ganesh, J. Pan, J. Xiong, and D. Chen, “Hikonv: High
throughput quantized convolution with novel bit-wise management and
computation,” in 2022 27th Asia and South Pacific Design Automation
Conference (ASP-DAC), 2022, p. 140–146.

[23] S. Basalama, J. Wang, and J. Cong, “A comprehensive automated explo-
ration framework for systolic array designs,” in 2023 60th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2023, pp. 1–6.

[24] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085, 2019.

[25] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang,
and J. Cong, “Automated systolic array architecture synthesis for high
throughput cnn inference on fpgas,” in Proceedings of the 54th Annual
Design Automation Conference 2017, 2017, pp. 1–6.

[26] J. Zhang, W. Zhang, G. Luo, X. Wei, Y. Liang, and J. Cong, “Frequency
improvement of systolic array-based cnns on fpgas,” in 2019 IEEE
International Symposium on Circuits and Systems (ISCAS). IEEE, 2019,
pp. 1–4.

[27] J. Sommer, M. A. Özkan, O. Keszocze, and J. Teich, “Dsp-packing:
Squeezing low-precision arithmetic into fpga dsp blocks,” in 2022 32nd
International Conference on Field-Programmable Logic and Applica-
tions (FPL). IEEE, 2022, pp. 160–166.

[28] “Nvdla deep learning accelerator,” 2017. [Online]. Available: http:
//nvdla.org

[29] X. Cai, Y. Wang, X. Ma, Y. Han, and L. Zhang, “Deepburning-seg:
Generating dnn accelerators of segment-grained pipeline architecture,”
in 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2022, pp. 1396–1413.

[30] H. Genc, S. Kim, A. Amid, A. Haj-Ali, V. Iyer, P. Prakash, J. Zhao,
D. Grubb, H. Liew, H. Mao et al., “Gemmini: Enabling systematic deep-
learning architecture evaluation via full-stack integration,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). IEEE, 2021, pp.
769–774.

[31] D. J. Moss, S. Krishnan, E. Nurvitadhi, P. Ratuszniak, C. Johnson,
J. Sim, A. Mishra, D. Marr, S. Subhaschandra, and P. H. Leong, “A
customizable matrix multiplication framework for the intel harpv2 xeon+
fpga platform: A deep learning case study,” in Proceedings of the 2018
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2018, pp. 107–116.

https:// github.com/heheda365/ultra net
https://openreview.net/forum?id=H1lBj2VFPS
http://nvdla.org
http://nvdla.org

	Introduction
	Background and Related Work
	4-bit Fully DSP Packing for Convolution
	Systolic Array for Convolution

	BaseSA with 4bF Packing and Its Limitations
	Dataflow Mapping Analysis
	BaseSA Architecture
	Quantitative Resource and Performance Analysis

	Design and Implementation of SA4
	Cost-Effective SAU
	IFM Fetcher
	Weight Fetcher
	Constraints on SAU Size

	Two-Level Hierarchical Architecture
	IFM Constructor
	IFM/Weight Distributor
	Two-Level Accumulator

	Evaluation
	Experimental Setup
	Comparison to 4-bit BaseSA
	Comparison for Latency
	Comparison for Resource Consumption
	Comparison for GOPS

	CNN Deployment with SA4

	Conclusion
	References

