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Abstract—The Bloom filter is one of the most widely used
data structures in big data analytics to efficiently filter out vast
amounts of noisy data. Unfortunately, prior Bloom filter designs
only focus on single-input-stream acceleration, and can no longer
match the increasing data rates offered by modern networks.

To support large Bloom filters with low false-positive rate
and high throughput, we present BitBlender, a configurable and
scalable multi-input-stream Bloom filter acceleration framework
in HLS. To effectively share one large bit-vector on chip among all
streams, we design and implement the novel arbiter and unshuffle
modules to dynamically schedule conflicting accesses to execute
sequentially and non-conflicting accesses to execute in parallel. To
support different user configurations of the Bloom filter, we also
develop an automation flow, together with an accurate perfor-
mance estimator, to automatically generate the best BitBlender
design. Experimental results show that, on the AMD/Xilinx Alveo
U280 FPGA, BitBlender achieves a throughput up to 2,194
MQueries/s (i.e., 8.8 GB/s) for a 96Mb bit-vector with 0.01%
false-positive rate. It achieves up to 10.4x speedup over a 24-
thread CPU implementation and up to 4.9x speedup over a
naively-duplicated multi-stream FPGA design. BitBlender will
be released soon at https://github.com/SFU-HiAccel/BitBlender.

I. INTRODUCTION

In the big data era, a vast amount of information is digitized,
offering opportunities for discovering new insights. However,
noisy data, stemming from sources such as sensor errors and
incomplete records, poses a threat to data integrity [1]. Filter-
ing methods are crucial for addressing such issues, improving
data quality by effectively identifying and eliminating noise.

Among all types of filters, the Bloom filter [2], which uses a
bit-vector for fast set-membership queries, stands out as one of
the most commonly used data structures for space-efficient and
high-throughput data lookup and filtering. It has been widely
utilized in big data analytics, such as database querying [3],
networking [4], [5], and bioinformatics [6].

Due to the significant slowdown of CPU scaling, prior
studies [7]–[9] have demonstrated respectable performance
improvements in accelerating Bloom filters using FPGAs.
Unfortunately, they mainly focus on accelerating a single input
stream Bloom filter and can no longer match the increasing
incoming data rate from modern networks or the host CPU.

Naively duplicating the single-stream Bloom filter design
rapidly exhausts the on-chip memory resources, especially for
large Bloom filters with a low false-positive rate target. A more
effective approach is to share the underlying bit-vector across
all input streams. However, this strategy introduces dynamic

access conflicts to the same bit-vector partition from multiple
streams, which leads to conservative sequential execution
between all streams in a statically-scheduled HLS design.

In this work, we propose BitBlender, the first dynamically-
scheduled, configurable, and scalable multi-stream Bloom
filter acceleration framework. To address the issue of access
conflicts in the bit-vector (due to sharing), we introduce a
stream-to-partition arbiter module, which leverages priority
encoding logic [10] to dynamically schedule conflicting ac-
cesses to execute sequentially and non-conflicting accesses to
execute in parallel. Accordingly, we introduce a partition-to-
stream module to reorganize the out-of-order (OoO, due to
arbitration) partial query results back into streams, before they
are aggregated to get the final output. Moreover, to prevent the
subtle deadlock caused by the OoO scheduling, we introduce
a ratelimit logic to prevent one stream from running too
far ahead of another. The entire design is dataflowed, where
each module is fully pipelined. Finally, we also develop an
automation tool, with a performance estimator to accurately
capture dynamic dataflow stalls, to automatically generate the
best BitBlender design for a user configuration of the Bloom
filter on a given FPGA.

We evaluate BitBlender for a variety of Bloom filter
configurations using randomly generated input queries. On
the AMD/Xilinx Alveo U280 FPGA, BitBlender achieves a
throughput up to 2,194 MQueries/s (i.e., 8.8 GB/s) for a
96Mb bit-vector at a false-positive rate of 0.01%. Compared to
the 24-thread CPU implementation, BitBlender achieves up to
10.4x speedup; while compared to a naively-duplicated multi-
stream FPGA design, BitBlender achieves up to 4.9x speedup.

In summary, this paper makes the following contributions:
1. An automated, configurable, and scalable multi-stream

Bloom filter acceleration framework named BitBlender.
2. A dynamic arbitration scheme (arbiter, unshuffle, and dead-

lock prevention) realized in statically-scheduled HLS.
3. A comprehensive evaluation and analysis of BitBlender.

II. BACKGROUND AND MOTIVATION

A. Basics of Bloom Filters

A Bloom filter [2] is a filtering data structure that is com-
posed of a bit-vector (BV ) of length L, along with H different
hash functions. It supports two basic operations: insertions and
queries. The insertion of elements into a Bloom filter works
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Fig. 1: Single-stream Bloom filter design, similar to [8].

as follows. Initially, the bit-vector is filled with all 0s. The
element to insert is first passed into the H hash functions,
yielding i1, i2, ..., iH. Then, each of these entries in the bit-
vector, BV [i1], BV [i2], ..., BV [iH], is set to 1.

Querying whether an element exists in a Bloom filter works
similarly. First, the input query is hashed, yielding H indices.
Then, it looks up these H bits, and performs an AND operation
i.e., BV [i1] ∧ BV [i2] ∧ ... ∧ BV [iH], to produce the output.
An output of 0 means the input is definitely not in the Bloom
filter, i.e., it is safe to filter out this input data. An output
of 1 means the input is probably in the Bloom filter, i.e., it
assumes the input data is useful and does not filter it out, with
a false-positive rate fp, described by Equation 1 [11]:

fp ≈ (1− e−HI/L)H (1)
The query false-positive rate fp decreases monotonically

with L (bit-vector length), and increases monotonically with I
(number of insertions). Its relationship with H (number of hash
functions) is more complicated: it reaches a global minimum
when H = L/I × ln 2 [4]. Since building a Bloom filter with
insertions is usually a one-time effort, in this paper, we focus
on accelerating the throughput of Bloom filter queries with a
variety of L, H, I, and fp combinations to match the line rate.

B. Baseline Single-Stream Bloom Filter Design

Fig. 1 shows our baseline single-stream Bloom filter query
accelerator on the FPGA, similar to that in [8]. The core
QueryBV units perform lookups into the bit-vector, which
is stored in BRAMs and URAMs on the FPGA. The bit-
vector is divided into H disjoint sections, so that each hash
function sends the computed index to its own bit-vector section
(QueryBV unit) to avoid access conflict and achieve a fully
piplined design. Note this sectioning does not affect the false-
positive rate [11]. Moreover, each BRAM or URAM bank has
two ports and can perform two bit-vector queries per cycle.

Here is the overall dataflow. In each cycle, an input query
pair (two queries) is streamed in from an off-chip memory
channel or a high-bandwidth network port. Next, each query is
sent to H parallel hash functions to compute the lookup indices
in the bit-vector in a fully pipelined fashion. The current hash
function is the widely-used 32-bit MurmurHash3 [12], and
can be easily replaced by an alternative. Finally, the lookup
results from H QueryBV units are aggregated together to get
the final output for each input query. This whole design is fully
pipelined and can perform two bit-vector queries per cycle.

C. Challenges to Multi-Stream Bloom Filter Scaling

Unfortunately, most existing Bloom filter designs [7]–[9]
only focus on single-stream design and cannot match the
increasing rate (bandwidth) of incoming data from modern
SmartNIC modules or off-chip memory. For example, a 100
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Fig. 2: Bit-vector sharing and access conflict example

Gbps network port on Alveo U280 FPGA board can transfer
input data at a rate of 10 GB/s. Assuming a single-stream
HLS (high-level synthesis) design runs at 200 MHz and each
query is 32-bit long, it can only process 2 queries/cycle * 4
bytes/query * 200MHz = 1.6 GB/s, leaving about a 6x gap.
Challenges for naive multi-stream duplication. A naive ap-
proach to improve the query throughput is to simply duplicate
the single-stream Bloom filter design for multiple streams.
However, the on-chip BRAM and URAM capacity will limit
the number of streams that it can duplicate, especially when a
large bit-vector length (L) is needed to keep the false-positive
(fp) rate low. For example, for a Bloom filter built with 8
million insertions (I = 8M ), to keep a fp = 0.02%, it needs
a bit-vector length of L = 144M with H = 9 hash functions.
The total capacity of on-chip memory (BRAMs + URAMs)
on Alveo U280 FPGA board is only about 41 MB, meaning
it can duplicate at most 41MB/144Mb = 2 streams.
Challenges for multi-stream bit-vector sharing. To avoid
the excessive on-chip memory usage, another alternative is
to let all streams share one copy of the bit-vector (with
H disjoint sections) as shown in Fig. 2. Each bit-vector section
is further divided into P partitions to allow parallel stream
access. However, the hashed indices from multiple streams
may conflict by accessing the same bit-vector partition, inside
each bit-vector section. For these potential access conflicts,
a statically-scheduled HLS design generated by vendor HLS
tools (such as Vitis HLS) conservatively assumes the conflicts
always happen. Thus, multiple streams would be scheduled to
access bit-vector sections in a sequential order, leading to the
same throughput as the single-stream design. In reality, access
conflicts are unlikely, allowing significant speedup potential.
Goal of this paper. Our goal is to design a high-throughput
scalable multi-stream Bloom filter accelerator where multiple
streams can dynamically share the same bit-vector using
vendor HLS: for the majority of the time, multiple streams
should run in parallel unless there are true access conflicts.

III. BITBLENDER DESIGN AND IMPLEMENTATION

A. Overall BitBlender Design and Novelties

To achieve our goal, we present BitBlender, a configurable
and scalable multi-stream Bloom filter acceleration frame-
work. The core idea is to design and implement a novel
dynamic arbitration scheme in vendor HLS to efficiently share
the bit-vector between S number of input streams.

An overview of our BitBlender architecture is shown in
Fig. 3 and every single module is fully pipelined with an
initiation interval (II) of 1. Neighbor modules are connected
using FIFOs. Each cycle, S query pairs are streamed into
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Fig. 3: Overall architecture of BitBlender. It depicts an example design with 3 input streams (S=3), 2 hash functions and 2
bit-vector sections (H=2), and 4 partitions per bit-vector section (P=4). Modules with bolded outlines have two duplicates.

2*S ComputeHash modules; modules with bolded outlines
have two duplicates, for the reason explained in Section II-B.
Each ComputeHash module computes H hashed indices for an
input query and sends these indices to query H disjoint bit-
vector sections. Each bit-vector section is further divided into
P partitions to enable parallel queries from multiple streams.

To address the access conflict to the same bit-vector partition
caused by multiple streams, we introduce a stream-to-partition
arbiter module (pair) inside each section, which uses priority
encoding logic [10] to schedule conflicting accesses to execute
sequentially. Note non-conflicting accesses to different bit-
vector partitions execute in parallel.

Meanwhile, this dynamic arbitration creates two new chal-
lenges for the aggregate module (pair) that aggregates the
query results from all hash sections for each stream. First,
the outputs from each hash section are now organized in bit-
vector partitions, instead of streams. To address this issue, we
introduce a partition-to-stream unshuffle module (pair) inside
each section to reorganize the query results in streams. Sec-
ond, inside each bit-vector partition, the outputs for multiple
streams are now out-of-order (OoO), e.g., stream 1 may be
processed a few items ahead of stream 0 in a specific partition,
depending on which partitions the hashed indices map to. Even
worse, in hash section 0, stream 1 may go far ahead of stream
0; while in hash section 1, stream 0 may go far ahead of stream
1. This could lead to a subtle deadlock between two aggregate
modules for stream 0 and stream 1, which will be detailed
in Section III-B2. To prevent the deadlock, we introduce a
ratelimit logic inside the arbiter module such that it can control
the maximum distance (D) one stream can go ahead of another;
meanwhile, in the unshuffle module, to unblock its input FIFO,
we buffer up to D outputs for each stream.

Finally, we also develop a design automation tool, with an
accurate performance estimator to capture dynamic dataflow
stalls, to automatically generate the best BitBlender design on
a given FPGA under the user configuration of the Bloom filter.

B. Stream-to-Partition Arbiter Design

1) Basic Arbiter Design: The stream-to-partition arbiter
aims to dynamically schedule conflicting accesses to the same
bit-vector partition to execute sequentially, while scheduling
non-conflicting accesses to execute in parallel. Alg. 1 shows
the pseudo code for its fully pipelined design (line 3, II=1).

Alg. 1 Pseudo HLS code for stream-to-partition arbiter
1: function ARBITER(in idx[S], out idx[P]], D)
2: idx buf[S] //buffer indices in registers for explicit control logic
3: while true do //pipelined, II=1
4: for s in 0 to S do //read from each stream, unrolled
5: //backpressure till idx buf[s] is consumed
6: if (!idx buf[s].valid && !in idx[s].empty()) then
7: idx buf[s].value = in idx[s].read()
8: idx buf[s].valid = true
9: for p in 0 to P do //write to each partition, unrolled

10: //search all streams for BV-idx mapping to partition p,
priority given to the stream with smaller stream-ID when conflict

11: for s in S to 0 do //unrolled
12: if (idx buf[s].value in idx range(p) &&
13: ratelimit ok(s, D) && idx buf[s].valid) then
14: s out = s //choose a stream-idx to write out
15: //write the chosen stream-idx to partition p
16: if out idx[p].write nb(idx buf[s out].value) then
17: idx buf[s out].valid = false

Each cycle, it first reads up to S valid hashed indices and
buffers them in the idx buf registers (lines 4-8). Next, for
each partition p (line 9), it implements a priority encoder [10]
(lines 10-14) to concurrently search all streams to find the
right one accessing this partition. When there are access
conflicts, it gives priority to the stream with the smallest stream
ID; in our optimized implementation, it gives priority to the
slowest stream by manipulating the stream loop order (line
11). Finally, it writes the chosen stream index (buffered in
idx buf registers) to the output index FIFO of partition p and
releases the corresponding idx buf buffer entry (lines 15-17).

The actual throughput of the arbiter, i.e., how many queries
it dynamically processes per cycle, depends on how of-
ten the design backpressures. Backpressure occurs when the
idx buf[s] buffer entry is not released yet and thus the arbiter
is blocked from reading input indices from stream s (line 6).
Since corresponding idx buf buffer entries are released when
they are written out (lines 16-17), backpressure only occurs
when the arbiter does not output data from a given stream.
This could happen for three reasons. First, during multi-stream
access conflicts, non-chosen streams will not be written out in
the current cycle and have to wait for the next cycles (lines 10-
14). Second, an output index FIFO is full due to backpressure
caused by downstream modules (line 16). Third, the ratelimit
logic (line 13) decides to pause a stream that runs too far
ahead; the ratelimit logic is designed to prevent deadlocks,
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which will be explained in Section III-B2.
2) Deadlock Prevention in Arbiter: The dynamic arbitra-

tion leads to out-of-order (OoO) scheduling between mul-
tiple streams, which could cause potential deadlocks in the
downstream aggregate modules. Note within each stream, the
scheduling is still in order. An example is shown in Fig. 4.

In hash section H0, after the arbiter and QueryBV modules,
stream 1 is running 2 steps ahead of stream 0: S1in0 is already
in the S1 aggregate stage, S1in1 is in the unshuffle stage,
S1in2 and S0in0 are waiting in the FIFO of bit-vector partition
H0-P0. Likewise, for hash section H1, stream 0 is running 2
steps ahead of stream 1: S0in0 is already in the S0 aggregate
stage, S0in1 is in the unshuffle stage, S0in2 and S1in0 are
waiting in the FIFO of bit-vector partition H1-P1.

Now stream 0 aggregate is waiting for S0in0 from section
H0 and stream 1 aggregate is waiting for S1in0 from section
H1 to finish their aggregation between all hash sections. On
the other hand, S0in0 is waiting and blocked by S1in2 in the
H0-P0 FIFO; S1in2 is blocked by S1in1 in H0 unshuffle; and
S1in1 is blocked by S1in0 in S1 aggregate. Likewise, S1in0

is also chain blocked by S0in0 in S0 aggregate. This forms a
circular dependence, which leads to a deadlock.

To prevent the deadlock, we introduce a ratelimit logic into
the arbiter to prevent one stream from going too far ahead
of another. To do this, each cycle, it monitors all the priority
streams that have been scheduled to the partitions, and gets
the location that the slowest stream has advanced into. Each
stream then compares its own location to the slowest one to
get an OoO distance, and pauses itself if the distance exceeds
a threshold D. In the example in Fig. 4, the arbiter allowed
D=2; instead, D=1 could prevent the deadlock as there would
be no S1in2 blocking S0in0 in the H0-P0 FIFO.

C. Partition-to-Stream Unshuffle Design

1) Basic Unshuffle Design: The partition-to-stream unshuf-
fle aims to reorganize the OoO query results in partitions back
to in-order query results in streams to prepare for the final
aggregation. Fig. 5 shows its fully pipelined design and we
omit its pseudo code due to space constraints.

Each cycle, it first reads up to P QueryBV values and buffers
them in the value buf registers if there are entries available.
This buffer is of size P×S×D, to hold up to D values for each
stream from each partition. The D dimension is introduced to
address the deadlock issue, which will be explained further

Unshuffle

Control
Logic S=3 D=3

value_buf

P=4

Fig. 5: Unshuffle module design
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in Section III-C2. Next, for each stream s, it concurrently
searches all partitions in the buffer for the corresponding value
to send. Note only one partition could hold the value, so there
can be no access conflict. Therefore, as opposed to the arbiter
module, there is no prioritization logic required. Finally, it
writes the chosen bit-vector value to the output FIFO of stream
s, and releases the corresponding value buf buffer entry.

As before, the actual throughput of the unshuffle module
depends on how often the design backpressures. Backpressure
occurs when a value buf buffer entry is not released yet and
the incoming value is mapped to buffer in the same entry.
Like the arbiter, value buf entries are released when they
are written out, so backpressure only occurs when unshuffle
cannot output data. This only happens when an output FIFO is
full, due to backpressure from downstream aggregate modules.

2) Deadlock Prevention in Unshuffle: The deadlock pre-
vention logic in the unshuffle module goes hand-in-hand with
the ratelimit logic in the arbiter. To accomodate the ratelimit
distance D in the arbiter, the unshuffle module has a buffer
for each input stream to hold up to D values, as described
in Section III-C1, to unblock its input FIFO from potential
blocking caused by faster streams. In the example in Fig. 4,
if the unshuffle module had a buffer of size D=2 for each
stream rather than D=1, it would solve the illustrated deadlock,
because the blocking S0in2 and S1in2 could be consumed.

D. Automation Support for BitBlender

To allow users to easily generate optimized BitBlender hard-
ware designs based on their own configurations, we develop
a design automation toolflow shown in Fig. 6.

It takes the FPGA resources and Bloom filter parameters as
inputs, including the desired false-positive rate (fp), the num-
ber of expected inserts (I) to the Bloom filter, and optionally
the bit-vector length (L). Our configuration calculator then pro-
poses multiple valid Bloom filter configuration combinations,



including the bit-vector length (L), number of hash functions
(H), number of partitions per bit-vector section (P), number
of streams (S), and ratelimit distance (D).

Next, our performance estimator selects the best-performing
Bloom filter design configuration. Together with our pre-built
BitBlender HLS design templates developed in TAPA tasks
[13], our code generator generates the optimized multi-stream
design. Finally, TAPA [13] performs automatic floorplanning
optimization for the generated design and calls Vitis to gen-
erate the FPGA bitstream. If it fails to generate the bitstream,
our tool selects the next best-performing design.
Performance estimator. As explained earlier, every single
module in BitBlender is fully pipelined with II=1 and the
entire design runs in a dynamic dataflow fashion. Ideally, it
could achieve a throughput of 2×S per cycle. Due to dynamic
dataflow stalls, its actual throughput is calculated as:

queries per cycle = 2× S/(1 + stall rate) (2)

The dynamic dataflow stalls are caused by backpressure in
the design. As explained in Section III-B1 and III-C1, the root
cause of backpressure is in the arbiter module, which causes
OoO scheduling and rate mismatch between multiple streams.
All other modules merely propagate stalls that are initiated
by the arbiter. Therefore, we estimate the dynamic dataflow
stall rate by generating a few thousand randomized inputs
to emulate the average stalls per cycle in the arbiter, under a
different combination of its design parameters: S, P, and D.

To evaluate the accuracy of our performance estimator, we
compare its predictions against the measured queries per cycle
of the BitBlender designs, across all configurations presented
in Section IV-C. Our results show an average relative error of
2.00%, and a maximum relative error of 5.56%.

IV. RESULTS AND ANALYSIS

A. Experimental Setup

Baseline CPU implementation. We develop a well-optimized
multi-threaded CPU implementation in C++, which provides
more configurability and outperforms alternative open-source
CPU implementations, including bloomd and rbloom [14],
[15], by more than 1.5x. This is because our implementation
is optimized for integers (not strings), and the alternatives did
not scale to use multiple threads properly. The hash function
currently used is the widely-used and high-performance 32-
bit MurmurHash3 [12], and can be easily replaced by an
alternative. All the input query data are 32-bit wide and
randomly generated. We compile the program using g++ with
the -Ofast and -march=native optimization flags and measure
its performance on a 14nm 12-core Xeon Silver 4214 CPU,
with 24 hyper-threads and 16.5MB L3 cache.
Hardware platform and software tools. We evaluate our
BitBlender accelerator designs on the 16nm AMD-Xilinx
Alveo U280 FPGA [16] board, which has a 100 Gbps net-
work interface. In addition, we also compare to the naive
multi-stream FPGA designs by duplicating multiple copies of
the single-stream design described in Section II-B. We use
the automated floorplanning optimization tool TAPA [13] to
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Fig. 7: BitBlender throughput at different S

improve timing closure, and Vitis v2021.2 [17] for hardware
synthesis. All FPGA results are measured on board and the
resource utilization is from post place-and-route reports.

In all cases, the throughput is calculated by the total number
of queries, divided by the time taken in our CPU or FPGA
kernel to process the queries.

B. Overall Performance Speedup of BitBlender

Table I shows the overall performance, measured in million-
queries-per-second, for auto-generated BitBlender designs un-
der various user Bloom filter configurations. Compared to
the 24-thread CPU baseline, BitBlender achieves an average
speedup of 9.15x and a peak speedup of 10.4x. Compared to
the naive multi-stream FPGA design, BitBlender achieves an
average speedup of 3.6x and a peak speedup of 4.9x.

Table I also lists the generated Bloom filter configuration
parameters (L, H, P, S, and D) by our automation tool, as well
as resource utilization and frequency for the FPGA designs.

C. Analysis for Different Bloom Filter Configurations

Here we analyze the BitBlender throughput when we vary
one of its design parameters in H (number of hash functions),
S (number of streams), P (number of partitions), and D (rate-
limit distance). Unless otherwise stated, by default, we set
H=9, S=6, P=8, D=16, and the bit-vector section length (per
hash function) to 16 million, i.e., the biggest design in Table I.
#Streams impact. Shown in Fig. 7, the throughput increases
roughly linearly when S increases. Table II also lists the corre-
sponding resource utilization and frequency when S changes.
For multi-stream designs, each additional stream adds about
8%-9% more LUTs, 6% more FFs, and 3% more DSPs.
Since the single-stream design does not require our dynamic
arbitration solution, the resource increase from S=1 to S=2
is bigger than the other S increments. Note the BRAM and
URAM utilization does not change, as the bit-vector is shared
among all streams. When S increases, the frequency gradually
decreases; when S=7, the timing closure fails as it consumes
too many resources and the router is unable to find a valid
solution. The frequency is primarily constrained by logic
delays in the arbiter and unshuffle modules, which grows with
S (and P). The maximum number of streams realizable in
BitBlender is constrained by the resource usage of the design
configuration and the timing closure.
#Hashes impact. Shown in Fig. 8, the throughput decreases
slightly when H increases. This is mainly caused by the fre-
quency drop due to more complicated floorplanning for larger
designs: with regards to queries per cycle, the differences are
negligible.



TABLE I: BitBlender auto-generated design performance and resource comparison. I = # inserted elements, fp = false-positive
rate, L = bit-vector length, H = # hash functions, S = # streams, P = # partitions per section, and D = ratelimit distance.

User Config Design Throughput
(MQueries/s)

Generated Config Resource Usage Frequency
(MHz)I fp L H S P D LUTs FFs BRAM URAM DSP

4M 0.01%
BitBlender 2,194 (8.0x) 96M 6 8 8 16 56.29% 36.06% 44.94% 30.00% 16.00% 158

Naive multi-stream 812 (3.0x) 80M×2 10 2 - - 11.85% 6.95% 67.71% 50.00% 3.24% 207
24-thread CPU 274 (1x) 96M 6 - - - - - - - - -

4M 0.001%
BitBlender 1,872 (9.7x) 128M 8 6 8 16 51.92% 33.12% 56.55% 40.00% 16.00% 152

Naive multi-stream 831 (4.3x) 96M×2 12 2 - - 12.37% 7.05% 79.12% 60.00% 3.77% 212
24-thread CPU 193 (1x) 128M 8 - - - - - - - - -

8M 0.2%
BitBlender 1,870 (8.5x) 112M 7 6 8 16 46.53% 29.74% 50.69% 35.00% 14.01% 152

Naive multi-stream 399 (1.8x) 112M×1 7 1 - - 9.94% 6.23% 50.32% 35.00% 1.24% 199
24-thread CPU 220 (1x) 112M 7 - - - - - - - - -

8M 0.02%
BitBlender 1,764 (10.4x) 144M 9 6 8 16 57.14% 36.51% 62.00% 45.00% 18.00% 146

Naive multi-stream 360 (2.1x) 144M×1 9 1 - - 10.43% 6.31% 61.83% 45.00% 1.51% 191
24-thread CPU 170 (1x) 144M 9 - - - - - - - - -

TABLE II: BitBlender resource utilization. I=8M, fp=0.02%.
S LUTs FFs BRAM URAM DSP Frequency
1 10.43% 6.31%

62.00% 45.00%

1.5% 191 MHz
2 22.78% 14.21% 6.03% 183 MHz
3 30.80% 18.92% 9.02% 174 MHz
4 38.68% 24.17% 12.01% 160 MHz
5 48.37% 30.04% 15.00% 158 MHz
6 57.14% 36.51% 18.00% 146 MHz
7 68.35% 43.38% 20.99% (did not route)

0

50

100

150

200

0

500

1,000

1,500

2,000

2,500

H=3 H=4 H=5 H=6 H=7 H=8 H=9

F
re

q
u

e
c

n
y
 (

M
H

z
)

T
h

ro
u

g
h

p
u

t 
(M

Q
u

e
ry

/s
)

Throughput Frequency

Fig. 8: BitBlender throughput at different H
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Fig. 9: BitBlender throughput at different P
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Fig. 10: BitBlender throughput at different D

#Partitions impact. Shown in Fig. 9, the throughput increases
when P increases, since BitBlender’s parallelism is constrained
by min(S,P) and S=6 in this case. Based on this calculation,
comparing P=4 to P=8, one might expect a performance gain
of 1.5x. However, the gain is closer to 1.3x, because the P=8
design achieves a lower frequency than P=4.
Ratelimit distance impact. Shown in Fig. 10, the through-
put increases when D increases. A smaller D leads to less
opportunities for OoO scheduling in the arbiter, and thus a
higher percentage of dataflow stalls. On the other hand, a larger
D leads to a larger buffer size and more resource utilization
in the unshuffle module. Therefore, we choose D=16, which
only causes about 0.2% of cycles to be stalls in the dynamic
dataflow.

D. Comparison with Previous FPGA Accelerator Designs

Table III compares BitBlender against prior FPGA designs:
[8], an early work accelerating single-stream counting Bloom
filters; [7], state-of-the-art SRAM-based Bloom filter accel-
erator on FPGA, employing high-frequency hash functions
in RTL design; and [9], state-of-the-art DRAM-based Bloom
filter accelerator, using radix sorters to order off-chip memory
accesses. We note that the FPGAs used in these studies are
smaller than our AMD/Xilinx Alveo U280 FPGA: Sateesan
et al. target a Virtex Ultrascale+ in [7]; Kang et al. target a
Virtex-7 in [9]; and Harwayne-Gidansky et al. target a Virtex-
4 in [8]. None of these works are open-sourced for us to
reproduce results on a larger FPGA. However, note that all of
these prior studies target a single-stream design, and therefore,
their throughput will be capped at two queries per cycle, even
in a larger FPGA with more resources.

TABLE III: Performance comparison with prior work

Work H Throughput
(MQueries/s)

Frequency
(MHz) L I @

fp = 0.1%

BitBlender
(ours, SRAM)

8 1,890 158 128M 9.2M
9 1,763 146 144M 10.3M

12 1,515 150 96M 6.9M
[7] (SRAM) 12 925 462 0.25M 18k
[8] (SRAM) 8 410 205 16k 1.1k
[9] (DRAM) 8 47 250 512M 36.8M

Compared to previous SRAM-based FPGA studies [7], [8],
BitBlender supports orders-of-magnitude larger bit-vectors and
maximum number of inserts under the same false-positive
rate. At the same time, BitBlender achieves about 2.0x and
4.6x higher throughput than [7] and [8]. Compared against the
DRAM-based FPGA implementation [9], BitBlender achieves
about 40.2x higher throughput while supporting a similar scale
of bit-vector size, which is only 4x smaller.

V. RELATED WORK

Bloom Filter acceleration on FPGA. Besides Bloom filter
acceleration studies presented in Section IV-D, Khairy et
al. proposed the first HLS-based Bloom filter accelerator
and achieved a throughput of 0.77 queries/cycle [18]. Other
studies utilized Bloom filter as part of a larger accelerator
on FPGA, such as flow-table lookups for software-defined
networking [19], equi-join operations in databases [20], and
DNA sequence comparisons [21]. However, they only support



single-stream acceleration. BitBlender is the first work to
support scalable multi-stream acceleration for Bloom filters.
Dynamic scheduling in vendor HLS. In [22], Du et al. pro-
posed a pipelined shuffle module in their SpMV accelerator to
dynamically arbitrate and resolve access conflicts to the dense
vector buffered on-chip. This is similar to our arbiter module.
However, our Bloom filter design is more complicated, as it
requires downstream unshuffle modules to reorganize the OoO
data in partitions back into in-order streams and requires dead-
lock prevention logic to avoid potential deadlocks between
multiple streams; neither of these happens in [22].
Dynamic HLS compiler. Another orthogonal line of work is
the recent dynamic HLS compiler toolflow. For example, in
[23], Josipović et al. introduced Dynamatic, a dynamically-
scheduled HLS compiler, which synthesizes a datapath con-
sisting of elastic components [24] that can tolerate dynamic
data-rates. Their results showcased a greatly improved cycle-
performance for dynamic workloads, at the cost of increased
resources and degraded clock frequency. In this work, we
demonstrate a dynamic arbitration scheme with our proposed
arbiter and unshuffle modules, together with the deadlock
prevention logic, in statically-scheduled vendor HLS.

VI. CONCLUSION

In this paper, we introduce BitBlender, a configurable and
scalable multi-stream Bloom filter acceleration framework in
HLS. To address access conflicts in the on-chip bit-vector,
caused by sharing it among multiple streams, we have de-
veloped a novel dynamic arbitration scheme in statically-
scheduled vendor HLS, which includes arbiter and unshuffle
modules, together with deadlock prevention logic. Based on
the user-defined Bloom filter configuration and FPGA spec-
ification, we have developed an automation tool to generate
the best-performing Bloom filter accelerator on FPGA. Ex-
periments on the Alveo U280 FPGA show that BitBlender
achieves a throughput up to 2,194 MQueries/s (i.e., 8.8 GB/s)
for a 96Mb bit-vector with 0.01% false-positive rate, which is
close to the line rate of its 100 Gbps (i.e., 10 GB/s) network
interface. On average, BitBlender achieves 9.15x speedup over
an optimized 24-thread CPU implementation and 3.6x speedup
over a naively-duplicated multi-stream FPGA design.

ACKNOWLEDGEMENTS

This work was supported in part by NSERC Discov-
ery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance
Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund
and BC Knowledge Development Fund; Huawei Canada,
AMD-Xilinx; and the Paderborn Center for Parallel Comput-
ing, Germany (for equipment access).

REFERENCES

[1] D. Garcı́a-Gil, J. Luengo, S. Garcı́a, and F. Herrera, “Enabling smart
data: Noise filtering in big data classification,” Information Sciences,
vol. 479, pp. 135–152, 2019.

[2] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, p. 422–426, jul
1970.

[3] AMD/Xilinx, “Vitis database library,” 2024, last accessed March
16, 2024. [Online]. Available: https://www.xilinx.com/products/
design-tools/vitis/vitis-libraries/vitis-database.html

[4] A. Broder and M. Mitzenmacher, “Survey: Network applications of
Bloom filters: A survey.” Internet Mathematics, vol. 1, 11 2003.

[5] B. Maggs and R. Sitaraman, “Algorithmic nuggets in content delivery,”
ACM SIGCOMM Computer Communication Review, vol. 45, pp. 52–66,
07 2015.
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