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Abstract—To improve the file storage efficiency of large
datasets, big data analytics usually use some common file formats,
such as Apache ORC (optimized row columnar) format, to
encode and compress the data. However, this shifts the IO
bottleneck (especially with high-bandwidth SSDs) to the com-
putation bottleneck on CPUs to decompress and decode the
data. This paper presents FORC, a high-throughput streaming-
based FPGA accelerator overlay that supports different ORC file
format decoders, and its dataflow integration with Apache ORC.
Experimental results show that FORC achieves up to 12.9GB/s
decoding throughput on AMD/Xilinx Alveo U280 FPGA, with a
geomean speedup of 65x (up to 335x) over the CPU. FORC will
be released soon at https://github.com/SFU-HiAccel/FORC.

I. INTRODUCTION

The vast volume of datasets have led to the adoption of
various file formats in big data analytics—such as Apache
Parquet [1], Avro [2], and ORC [3]—to improve the data
storage and management efficiency. These file formats usually
encode and compress the raw data to reduce their storage
space and facilitate faster data transfers, and improve query
performance by retrieving only the relevant data. Among them,
the column-oriented Apache ORC has risen to prominence due
to its better data compression ratio and query performance [4],
as well as its built-in support for ACID (atomicity, consistency,
isolation, durability) transactions [3].

Unfortunately, the storage benefits come at the cost of higher
computation demand to decompress and decode these file
formats for downstream query operations. To demonstrate this,
in Fig. 1, we break down the execution time for the CPU to
scan an ORC-encoded file from an SSD to a consumable table
in memory (detailed setup in Section IV-A). With the improved
IO bandwidth from the SSD, IO read only occupies 3% of
the execution time. Instead, data decompression and decoding
of the ORC file on the CPU occupy 54.2% and 40.3% of the
execution time, which become the new bottlenecks and require
computation acceleration. While prior studies [5] [6] [7] have
well accelerated the data decompression, there is few existing
work in accelerating the data decoding stage in ORC.
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Fig. 1: CPU runtime breakdown of processing ORC file

In this work, we focus on accelerating the data decoding
stage in processing ORC files with commodity datacenter FP-

GAs, which is nontrivial due to the following challenges. First,
an ORC file often uses a (different) combination of multiple
encoding schemes, including short repeat, direct, patched base,
and delta encoding [3]. Designing a separate decoder engine
for each encoding would consume resources quickly and leave
little room to incorporate downstream query accelerators on
the same FPGA. Second, decoding the (encoded) raw data
depends on the decoding of the header to reveal the encoding
scheme, which takes multiple clock cycles and could prevent
the fully pipelined design (i.e., pipeline initiation interval of
one, II = 1). Moreover, the sequential accumulation of the
delta decoder (detailed in Section III-B) poses a challenge for
a fully pipelined design to decode multiple data items per cycle
from a 512-bit wide stream. Finally, for big data analytics to
transparently leverage the benefits of the FPGA-accelerated
decoders, there needs a seamless and efficient integration of
the FPGA accelerator into Apache ORC, which could well
hide the data transfer overhead between the CPU and FPGA,
and the IO read.

To address the above challenges, we design and imple-
ment FORC, the first high-throughput streaming-based FPGA
accelerator for decoding Apache ORC files used in modern big
data engines. FORC incorporates the following novel features:

1. A resource-efficient overlay design to share the design of
common operations across decoders and support different
combinations of ORC decoding schemes (and bit widths).

2. A fully (dynamic) pipelined ORC decoder engine that can
process up to the output streaming rate, i.e., four 512-bit
wide streaming writes per cycle. For the header decoding
obstacle, we trade off pipeline latency for throughput by
buffering and delaying the starting of fully pipelined data
decoding. For the delta decoding obstacle, we customize a
resource-efficient tree-based partial accumulation architec-
ture to achieve a fully pipelined design.

3. An end-to-end dataflow integration of our accelerator into
Apache ORC C++ library [3], which well overlaps the IO
read, CPU-FPGA data transfer, and FPGA computation.

Our FORC accelerator only uses 17.68% of LUTs and
negligible amount of DSPs/BRAMs on the AMD/Xilinx Alveo
U280 FPGA. Evaluated on both synthetic datasets and widely
used TPC-H datasets [8], our FORC FPGA engine achieves up
to 12.9GB/s decoding throughput considering the input data
and 48.5GB/s decoding throughput considering the inflated
output data, which is on average 65x faster than the Intel



Index Data
Row Data

Stripe Footer

File Footer
Postscript

Index Data
Row Data

Stripe Footer

Index Data

Row Data
Stripe Footer

Col 1 stats
Col 2 stats

Col N stats
H|D|D|H|D|D
H|D|D|H|D|D

Col:1
Col:2

H|D|D|H|D|D Col:N

H: Header
D: Encoded Data

ORC File
Metadata

start
end
start
end

ORC File 
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Xeon CPU implementation of Apache ORC C++. For the end-
to-end integration, FORC achieves a throughput up to the IO
bandwidth limit and PCIe bandwidth limit, which is on average
11x faster than the CPU implementation.

II. APACHE ORC FILE FORMAT

The Apache ORC (optimized row columnar) file format [3]
is structured to optimize the storage and retrieval of large
datasets in big data engines. It stores data in columns (colum-
nar storage) to enhance compression and query performance.
Fig. 2 describes the overall ORC file structure [3]. It divides a
file into multiple stripes. The file footer and postscript contain
critical file metadata, such as the type of compression used,
location of each stripe, type schema information, number of
rows, and statistics about each column. Each stripe is self-
contained and includes three components: index data, row data,
and stripe footer. The stripe footer contains information about
the location of each column and encoding type in general. The
index data contains the statistics (e.g., min and max) of each
column, which is used for optimization of the query execution.
The row data is stored in multiple columns, where each column
stores the encoded (raw) data and the headers indicating the
encoding schemes. Note each column can use a combination
of multiple encoding schemes. In this paper, we refer to all
the file footer, postscript, stripe footer and index data, except
the row data, as ORC file metadata.

A. ORC Encoding and Decoding Schemes

Apache Hive 0.12 introduced a new version of run length
encoding (RLEv2) in ORC, which enhanced compression
capabilities and optimized fixed data width encodings [3].
RLEv2 employs four distinct encoding schemes that are based
on the data characteristics: short repeat, direct, patched base,
and delta encoding [3]. As shown in Fig. 2, for each column,
data is encoded in batches, where each batch uses a dedicated
encoding and has a header recording essential encoding infor-
mation. The first two bits of the header act as identifiers for
the chosen encoding scheme. Next we explain the common
operations among all these data encoding schemes and thus
the decoders, followed by scheme-specific operations.

TABLE I: Examples of four different ORC encoding schemes.
Encode Scheme Raw Data Header Encoded Data

Short repeat (#0) [500, 500, 500,
500, 500]

1 byte
(#0, 16 bits, 5 values) 500

Direct (#1) [2000, 300, 800] 2 bytes
(#1, 16 bits, 3 values) 2000, 300, 8000

Patched base (#2) [2030, 2000, 2020,
1026010, 2040]

4 bytes
(#2, 8 bits, 5 values;
base value: 16 bits;

PW: 12 bits,
PGW: 2 bits, PLL: 1)

2000 ,
30, 0, 20, 10, 40,

(3, 4000)

Delta (#3) [500, 510, 550,
555, 560, 572]

2 bytes
(#3, 8 bits, 6 values)

500 , 10 ,
40, 5, 5, 12

1) Common Encoding and Decoding Operations: There are
two common operations among all data encoding schemes:
1. Changing data endianness: ORC encodes data in big

endian format for compatibility with its Java version. How-
ever, the Intel Xeon CPU and FPGA accelerator use little
endian to store data. Therefore, before decoding the data
according to each encoding scheme, we first need to convert
big endian into little endian by shifting the data bytes.

2. Zigzag and unzigzag for signed integers: For a signed
integer data, ORC always converts it into an unsigned in-
teger representation using a zigzag encoding, which moves
the sign bit to the least significant bit using the expression
(val << 1) ˆ (val >> [maxBitSize]).
During the decoding stage, an unzigzag operation
(value >> 1) ˆ -(value & 1) is required before
applying each specific decoding scheme.
2) Scheme-Specific Encoding and Decoding Operations:

Table I gives an example for each data encoding scheme:
1. Short repeat: It is used to encode short sequences with 3

to 10 repeated values. Table I shows an example to encode
five 500s. For the encoded data, it only records the value
once. Its header is one byte long and encodes the following:
1) the first two bits indicate the encoding scheme; 2) the
next three bits encode the data width (in bytes) of values;
and 3) the last three bits indicate how many times the value
repeats (i.e., run length).

2. Direct: It is used for random sequences with a fixed data
width, up to 512 values. For the encoded data, it directly
copies the input data (Table I). Its header is two bytes long
and encodes the following: 1) the first two bits indicate
the encoding scheme; 2) the next five bits encode the bit
width of values; and 3) the last nine bits indicate how many
values there are (i.e., run length).

3. Patched base: It is used for random sequences with a
variable data width, up to 512 values. Table I shows an
example of input sequence of 2030, 2000, 2020, 1026010,
2040, where 1,026,010 is 32-bit wide and other values are
16-bit wide. To encode this sequence, it has three steps:
1) a common base value (the smallest number, 16-bit) of
2000 is recorded; 2) the difference (8-bit) of each value
subtracting the base value is recorded as 30, 0, 20, 10, 40; 3)
for each larger bit width value (1,026,010) whose difference
value overflows (in 8-bit), a patch value for the remaining
difference (1,024,000) needs to be recorded. Such patch
value is recorded in a pair: 1) the first is its index (i.e.,
3) in the original sequence, whose bit width is denoted as
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Fig. 3: Overview of FORC hardware architecture

patch gap width; and 2) the second is the high bits of the
difference, i.e., 1,024,000 >> 8 = 4,000, whose bit width
(excluding leading zeros) is denoted as patch width.
Its header is four bytes long. The first two bytes follow the
same encoding as described for direct encoding, except that
the bit width (8 bits for the example) is for the subtracted
difference value. The remaining two bytes of the header
encode the following: 1) the first three bits indicate the data
width (in bytes, 16 bits) of the base value; 2) the next five
bits encode the patch width (PW=12 bits for the example);
3) the next three bits encode the patch gap width (PGW=2
bits); and 4) the last five bits indicate the patch list length
(PLL=1), i.e., number of patches.

4. Delta: It is used for monotonically increasing or decreasing
sequences with a fixed data width, up to 512 values. For the
encoded data, it stores the first input value as the base value;
for each remaining input, it stores its difference (delta) to its
immediate predecessor value. The bit width of the deltas is
usually smaller than that of the original values. The header
encoding follows the same encoding as described for direct
encoding, except that the bit width is for the delta values.
There is a special case when all delta values are the same:
the header encodes the delta bit width to zero to indicate
this case (Delta 0b), and only one delta value is encoded.

III. FORC DESIGN AND IMPLEMENTATION

To avoid frequent CPU-accelerator communication over-
head, we decide to offload all ORC decoders onto the accel-
erator. Moreover, to leave sufficient amount of resources for
integrating other query accelerators such as decompression,
filtering, and sorting, we propose a resource-efficient overlay
design that dynamically supports all combinations of ORC
decoders discussed in Section II-A and shares as many com-
mon operations as possible among them. Performance wise,
we design a fully pipelined streaming accelerator architecture
that processes up to the output memory streaming rate, which
goes beyond today’s SSD and PCIe bandwidth limits and is
future-proof for next-generation high-bandwidth IO devices.
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Fig. 3 shows an overview of the FORC hardware archi-
tecture on a commodity HBM-based FPGA device. First, Sec-
tion III-A describes Part 1: Header & Data Parsing Engine,
which streams in 512-bit data per cycle to saturate the off-
chip memory bandwidth of one HBM bank [9], dynamically
parses the header, buffers and aligns the data for all types of
ORC decoders with delayed processing, in a fully pipelined
fashion. Second, Section III-B presents fully pipelined Part
2: Data Decoding logic of all four decoders and their com-
mon data shift/unzigzag unit, including hardware optimization
techniques to save resource and improve throughput. Thirdly,
Section III-C shows Part 3: Data Writing common logic,
preparing and streaming out the decoded (and often inflated)
raw data into multiple HBM banks. Finally, Section III-D
discusses the end-to-end integration of FORC with Apache
ORC C++ library [3], overlapping the IO read, CPU-FPGA
data transfer, and FPGA computation.

A. Header & Data Parsing Engine

Header Parsing & Data Buffering Engine. As shown in
Fig. 4, to saturate the off-chip memory bandwidth [9], it
streams in one 512-bit data per cycle and buffers the data
in a shift register to be processed in a pipeline fashion. The
header parsing finite-state machine (FSM) constantly monitors
the header information from this shift register that contains
both header and encoded data. Once a header is detected, the
header parsing FSM takes six cycles to decode: 1) encoding
scheme, 2) data width, 3) run length, and 4) scheme-specific
information for patched base and delta encoding schemes. In
the next cycle, the buffered (encoded) data along with decoded
header information will be streamed to the data aligner. Note
the first data cannot be sent until the header is parsed (pipeline
depth = 7); after that, all following data are passed in a
fully pipelined fashion (II=1). The pipeline overhead is usually
small except for a small run length (pipeline tripcount).
Data Aligner. Upon receiving the encoded data (which is
unaligned as the header occupied some bytes in the stream)
and the decoded header information, data aligner first prepares
the encoded data by partitioning and repacking it based on
the data width, and then sends it to the data shift/unzigzag
units. For the special case of delta encoder (Delta 0b), where
all delta values are the same and only one delta value is
encoded, the delta value is duplicated and passed to each
data shift/unzigzag unit. Data aligner also passes the decoded
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header information to the data selector that is used in the data
writing logic (Section III-C).

B. Data Decoding Engines

Data Shift/Unzigzag Unit. Upon receiving the aligned data
and before sending it to each specific decoder, this unit
unpacks the 512-bit data from the stream into multiple items
with the decoded data width (e.g., 16 32-bit data items).
After that, it converts the endianness of the data to little
endian and performs the data unzigzag operation as described
in Section II-A1. To make sure this unit can process 512-
bit of encoded data per cycle, these operations are coarsely
pipelined, each parallelized by a factor of 16. To support the
8-bit encoding data width, we include four of these units.
Delta Decoding PE (Processing Element). In delta decoding,
the input delta value is sequentially accumulated with the
running sum from its immediate predecessor, which poses a
challenge when we need to decode multiple data items (e.g.,
16 32-bit data items) per cycle from the wide stream. Fig. 5
shows how the data streams with encoded values from Table I
are decoded. To achieve a dynamic initial interval (II) of 1,
we optimize our design to compute multiple partial sums on
(sub-)streams in parallel and over multiple stages.

In the first cycle, each data stream computes its own partial
delta sum (e.g, [500, 10]->[500, 510], [40, 5]->[40, 45], and
so on). After this, the partial delta sum from the first data
stream goes to the final sum unit to be added with the previous
stored running sum (this is 0 in the example as the stream
just started with the base value 500) and pass to data writing.
Meanwhile, the following partial sum units in the pipeline
will add the running total from stream one to the previously
calculated partial delta sums from stream two: e.g, running
total 510 from stream one is added to partial sums [40, 45]
from stream two to get [550, 555] for stream two. This process
repeats until all data streams have been accumulated with the
running total from previous streams and it is fully pipeline
with II=1. Moreover, to reduce the number of pipeline stages,
we add partial sum units between every two neighbor streams.
Patched Base Decoding PE. Four summation units work in
parallel to add the base value with the difference values from
data shift/unzigzag unit and pass the output to data writing.
Patched Metadata PE. As described in Section II-A2, for
each value with a larger bit width, a patch index and value
pair is encoded. The patched metadata PE directly gets the
patch list from the header parsing and data buffering engine,
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and decodes it to get each pair of the patch index and patch
value (higher bits of the remaining difference). And the patch
value is left shifted by the bit width from the decoded header
(number of lower bits) to get the full-bits remaining difference.
After that, we pass the new pairs to the metadata writer.

Instead of adding this remaining difference with the sum
obtained from the patched base decoding PE on the FPGA,
we leave it to the host CPU to do this final addition when the
CPU reads the data. The reason is that the patched metadata PE
can only start reading the patch list after all regular difference
values have been read (and processed), due to the streaming
nature of our design. Note in practice, patched base encoding
is only used if at most 5% of the values in the sequence are
of variable bit width; otherwise, direct encoding is used. So
this is not a performance issue in our end-to-end integration.
Short Repeat (SR) Decoding PE. Data after shift/unzigzag is
duplicated run length number of times and sent to data writing.
Direct Decoding PE. The output data from the shift/unzigzag
units is treated as the decoded data and sent to data writing.

C. Data Writing

Data selector maintains the order of the decoded raw data
using the decoded header information from the data aligner.
Data writer divides the decoded raw data and writes them
onto four parallel off-chip HBM banks, considering the output
data inflation.
Metadata writer takes the decoded patch list metadata from
the patched metadata PE and writes it to one off-chip HBM
bank.

D. End-to-End Integration with ORC C++ Lib

To transparently leverage our accelerated decoders in big
data analytics, we integrate FORC into the Apache ORC C++
library [3]. Fig. 6 shows the dataflow integration in the host
program: the four stages—IO read, CPU to FPGA input data
transfer, FPGA decoding, and FPGA to CPU output data
transfer—for each stripe of an ORC file are executed in a
dataflow fashion. To achieve this, each input and output port
mentioned in prior subsections are connected to two HBM
banks to enable the ping-pong overlapping. As a result, FORC
utilizes a total of 12 HBM banks: two for input data, eight
for inflated output data, and another two for the patch list
metadata. Note the metadata (defined in Section II) processing
is done only once per ORC file using the ORC software library
tools, before initiating the ORC decoding on the FPGA.

We model the end-to-end decoding throughput of FORC as:

BWE2E = min

(
BWIO,

BWPCIe

CR+ 1
, ComputeFPGA

)
(1)



where CR is the compression ratio and BWPCIe/(CR + 1)
is the effective PCIe bandwidth (BW ) shared between trans-
ferring both input data and decoded output data (inflated
by CR times), BWIO is the disk IO read bandwidth, and
ComputeFPGA is the FPGA engine’s decoding throughput.

IV. RESULTS AND ANALYSIS

A. Experimental Setup

Benchmark Datasets. First, we evaluate FORC for each
decoding scheme under a range of data widths (8-bit to 32-
bit) using synthetic ORC dataset where each column contains
only one particular encoding scheme. Then we evaluate FORC
on the widely used TPC-H [8] dataset, which uses different
combinations of decoding schemes and data widths. We used
a 10GB dataset scale for TPC-H tables, and loaded the dataset
from a completely cold system. Due to the fully dataflow
nature of our FORC design, increasing the dataset size beyond
10GB does not affect the achieved decoding throughput.
Hardware and Software Setup. We evaluate our FORC de-
sign on the AMD/Xilinx Alveo U280 datacenter FPGA board
(with 32 HBM2 banks) [10]. FORC is developed entirely
using Vitis HLS, and the accelerator is synthesized using Vitis
2021.2 [11] and an open source floorplanning optimization
tool for task-parallel HLS designs called TAPA/Autobridge
(Ver.0.0.20221113.1) [12]. Without TAPA/AutoBridge, FORC
achieves 199MHz frequency. With default TAPA/AutoBridge
floorplanning, it achieves 208MHz frequency. After we further
provide manual placement constraints to TAPA/AutoBridge, it
achieves 222MHz frequency for on-board execution.

For the CPU implementation, we evaluate the well-
optimized Apache ORC C++ library v1.8.6 [3] on an Intel
Xeon Silver 4214 2.20GHz CPU with data stored on a
Samsung NVMe SSD with 3.0 to 3.3 GB/s of sequential data
read bandwidth. The FPGA board is connected to the Xeon
CPU via 16-lane PCIe Gen 3, which achieves around 10GB/s
bandwidth using Vitis.
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B. Overall FORC Speedup Over CPU

Fig. 7(a) summarizes the geomean performance speedup of
the FORC FPGA engine over the CPU version, which are
64.7x and 23.8x on synthestic dataset and TPC-H dataset. This
difference is caused by different combinations of decoding
schemes, which we will explain in Section IV-C and IV-D.
Fig. 7(b) compares their peak decoding throughput considering
input data stream. FORC achieves 12.9GB/s decoding through-
put, which fully utilizes the effective bandwidth of one HBM
bank characterized in [9] and is 11x higher over the CPU.

Note the reported FPGA decoding throughput only considers
the FPGA kernel execution time, without considering the IO
read and the data transfer between the host and the FPGA,
which we will include in the end-to-end throughput report. It
demonstrates that our design’s throughput goes beyond today’s
SSD and PCIe bandwidth limits and is future-proof for next-
generation high-bandwidth IO devices. Similarly, the reported
CPU decoding throughput does not include IO read.

C. FORC Throughput for Each Decoder

Fig. 8 compares the throughput of each decoder on the
CPU and FPGA, considering the throughput for both input and
output streams. For each decoder, we also show the results for
the smallest and biggest bit widths (8-bit and 32-bit) to provide
a range of achievable throughput under different compression
ratios (CR = output size / input size) by the encoders.
Direct Decoding Throughput. For Direct 32b, the compres-
sion ratio is one. The input and output throughput of FORC
are the same 12.9GB/s, which fully utilizes the bandwidth of
one HBM bank and is about 11x faster than the CPU. For
Direct 8b, the compression ratio is 4x. The input throughput
on the FPGA drops a bit to 11.9GB/s due to more frequent
header parsing overhead under the same data size. The output
throughput on the FPGA is 47.4GB/s, which is roughly 4x of
its input throughput and 42.5x higher than that of the CPU.
For intermediate bit widths, the input throughput of FORC
will be in the range of 11.9GB/s to 12.9GB/s.
Delta Decoding Throughput. For Delta 32b and Delta 8b,
the FPGA input and output throughput is similar to that of
Direct 32b and Direct 8b, while the CPU throughput is much
lower than direct decoding, which confirm the efficiency of our
fully pipelined design. In the extreme of Delta 0b, where all
delta values are the same and only one delta value is encoded,
the input throughput for both CPU and FPGA significantly
drops due to the extremely high compression ratio of ∼238x
and thus significant back pressure from the data writing part
(i.e., writing ∼238x more output). The key metric to look at
here should be the output throughput, for which FORC still
achieves 48.51GB/s, 56.5x faster than the CPU.
Patched Base Decoding Throughput. The up range of the bit
width for patched base decoding is 24-bit, as 32-bit is reserved
for the larger variable bit width. Compared to direct decoding
and delta decoding, the FPGA input and output throughput
drops due to extra delay of processing the patch list metadata.
Nevertheless, the FPGA can still achieve an input throughput
of 9.72GB/s to 12.83GB/s, ∼335x faster than the CPU.
Short Repeat Decoding Throughput. Due to the extremely
small run length (3 to 10) in short repeat decoding, there is
not much room for parallelism and pipeline, and there is too
frequent header parsing, i.e., one header parsing per encoded
sequence in the 512-bit wide stream. As a result, both CPU and
FPGA throughput are limited. Nevertheless, the FPGA is still
on average ∼104x faster than the CPU. In addition, we need
to include this decoder on the FPGA overlay to avoid frequent
CPU-FPGA communication when decoding a real dataset that
uses a mix of decoding schemes.



1
2

.9
2

1
1

.9
1

1
2

.9
2

1
2

.2
4

0
.2

0

1
2

.8
3

9
.7

2

0
.1

5

0
.0

6

1
2

.9
1

47.45

1
2

.9
2

48.51 48.47

1
6

.9
5

3
7

.7
9

1
.1

6

0
.8

4

1
.1

9

0
.2

8

0
.7

1

0
.1

9

0
.0

0
4

0
.0

6

0
.0

3

0
.0

0
1

0
.0

0
1

1
.1

8

1
.1

5

0
.7

1

0
.7

4

1
.1

4

0
.1

1

0
.1

1

0
.0

0
8

0
.0

1

0

5

10

15

0

10

20

30

40

50

60

Direct 32b Direct 8b Delta 32b Delta 8b Delta 0b Patch 24b Patch 8b SR 32b SR 8b

Th
ro

u
gh

p
u

t 
(G

B
/s

)
FPGA IN FPGA OUT CPU IN CPU OUT Compression Ratio

238.28

Fig. 8: Throughput comparison of direct, delta, patched base, and short repeat decoders under different bit widths
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Fig. 10: TPC-H dataset FPGA decoding throughput

D. FORC Throughput on TPC-H Dataset

TPC-H Decoding Combination and Throughput. We also
evaluate FORC on the industrial standard TPC-H dataset,
which uses a combination of different decoding schemes and
bit widths, as shown in Fig. 9. Fig. 10 compares the effective
decoding throughput on FPGA and CPU, which is decided
by the decoding combination in Fig. 9. On average, FORC
achieves 24x speedup over the CPU. This speedup is lower
compared to that for the synthetic dataset as TPC-H dataset
mostly uses direct and delta decodings which achieve relatively
lower speedups. For the lineitem table, it mostly uses direct
decoding with different bit widths, and thereby achieves a
high input throughput of 12.7GB/s. For the customer, part,
and supplier tables, they use a mix of Delta 0b and Direct 8b
schemes with a high compression ratio; therefore, they achieve
a high output throughput but lower input throughput. For the
partSupp table, its throughput is impacted by the slowest short
repeat decoder. For the orders table, it has a more balanced
mix and achieves something in the middle.
End-to-End Throughput. Fig. 11 compares the end-to-end
decoding throughput of the FORC integration into Apache
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Fig. 11: TPC-H dataset end-to-end decoding throughput

ORC C++ library on the TPC-H dataset. In the end-to-end
throughput, we consider both the SSD read and host-FPGA
data transfer via PCIe, and its peak throughput is constrained
by SSD bandwidth and/or PCIe bandwidth. On average, it
achieves a geomean of 11x speedup over the CPU version.
For the lineitem table, it has a low compression ratio and
it achieves 2.8GB/s end-to-end throughput, close to the SSD
read bandwidth. For the customer, part, and supplier tables
that have a high compression ratio (CR), they are limited
by the PCIe bandwidth, BWPCIe/(CR + 1), as analyzed in
Section III-D. For the orders and partSupp tables, their end-to-
end throughput also drops lower than the SSD read bandwidth
due to the presence of much slower decoding schemes, i.e.,
Delta 0b and short repeat, in some decoding phases.

E. Resource Utilization and Power Consumption

Table II breaks down post place and route resource uti-
lization of FORC on the Alveo U280 FPGA. First, our
complete design only uses 17.68% LUTs, 4.17% FFs, and
negligible DSP/URAM/BRAM resources, which leaves plenty
of resources to integrate other query accelerators. Second, our
scheme-specific decoding engines use only 3.93% LUTs and
1.47% FFs and the remaining resources are all used by the
common logic shared by different decoders, which confirm
the resource-efficiency of our overlay design.

TABLE II: Resource utilization breakdown on Alveo U280
LUTs FFs DSPs URAM/BRAM

P1: header & data parsing 6.60% 1.27% 0.03% 0
P2a: data shift/un-zigzag 5.30% 0.92% 0 0
P2b: data decoding engines 3.93% 1.47% 0 0
P3: data writing 1.85% 0.50% 0 0
Overall FORC design 17.68% 4.17% 0.03% 0



Finally, the power consumption is measured using vendor
xbutil tool. The U280 FPGA board consumes ∼26.2W static
power and our design only consumes ∼3.9W dynamic power.

V. RELATED WORK

Previous efforts have proposed FPGA accelerator designs
for big data query operations such as decompression [5]–
[7], filtering [13], and sorting [14], [15]. Many of these
studies are covered in [16], where Fang et al. also provide
a comprehensive survey on the status of in-memory database
acceleration on FPGAs. However, there is few existing work
focusing on big data file format decoding, which is becoming
one of the major (orthogonal) computation bottlenecks in big
data analytics, especially with today’s high-bandwidth SSDs.

The only exception is [17], where Peltenburg et al. present:
1) an FPGA accelerator for decoding Apache Parquet [1]
file format into Arrow [18] in-memory data, 2) separate
engine designs for different decoding schemes (only direct
and delta decoders) and data widths, and 3) a maximum
throughput of 8GB/s on AWS F1 instance for direct and delta
decoders. To distinguish our efforts from [17], first, FORC
decodes ORC file format to in-memory data, which provides
better data compression ratio and query performance than
Parquet [4], as well as built-in support for ACID transactions
that Parquet does not support [3]. Second, FORC designs a
unified resource-efficient overlay supporting all ORC decoders
explained in Section II-A2—including patched base and short
repeat decoders that [17] does not support—and a wide range
of data widths. Last but not least, FORC achieves a fully
pipelined design and fully utilizes the effective HBM bank
bandwidth on the FPGA, achieving up to 12.9GB/s throughput
for direct and delta decoding, 61.5% higher than that of [17].

VI. CONCLUSION AND FUTURE WORK

In this work we have proposed a high-throughput streaming-
based FPGA accelerator overlay called FORC to accelerate
widely used ORC file format decoding in big data engines.
FORC employs a resource-efficient and fully pipelined overlay
design to support different combinations of ORC decoding
schemes and bit widths, which can process up to the output
streaming rate. To transparently leverage the FPGA acceler-
ation for big data analytics, we also integrate FORC with
Apache ORC C++ library to execute in a dataflow fashion,
which achieves an end-to-end decoding throughput up to the
IO read and PCIe bandwidth limits. Across a wide range of
synthetic dataset and industry standard TPC-H dataset, FORC
achieves a geomean performance speedup of 65x for the FPGA
engine and 11x for the end-to-end performance, over the CPU
version. Our FORC framework will be open-sourced soon
at https://github.com/SFU-HiAccel/FORC. In future work, we
plan to extend it to support decompression operations as well.
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