
HiTC: High-Performance Triangle Counting on

HBM-Equipped FPGAs using HLS

Junzhe Liang, Manoj B. Rajashekar, Xingyu Tian, Zhenman Fang

HiAccel Lab, Simon Fraser University, Burnaby, Canada

{jla813, mba151, xingyut, zhenman}@sfu.ca

Abstract—Triangle counting (TC) is one of the fundamental
computing patterns in graph computing and social networks. Due
to its high memory-to-computation ratio and random memory
access patterns, it is nontrivial to accelerate TC’s performance.
In this work, we propose a high-performance TC (HiTC) accel-
erator to speed up triangle counting on high-bandwidth memory
(HBM)-equipped FPGAs via software/hardware codesign. First,
we propose hardware-friendly reordering, tiling, and encoding
techniques to address the random access issue and optimize
bandwidth utilization. Based on that, we design a streaming-
based FPGA accelerator that leverages HBM to achieve higher
bandwidth and customize the computation pipeline for bet-
ter computing throughput. Experiments using the SuiteSparse
dataset show that our HiTC achieves a geomean speedup of
8.6x (up to 24.1x) over the Vitis TC FPGA library on the
AMD/Xilinx HBM-based Alveo U280 FPGA. Compared to the
software implementation on two 12-core Intel Xeon Silver 4214
CPUs, HiTC achieves a geomean speedup of 18.6x (up to 669.8x).

I. INTRODUCTION

Graph theory is developed to understand and analyze many

real-world scenarios, from social networks to logistics systems.

Triangle counting (TC) is a fundamental task in graph theory

and social network analysis, which determines the number of

triangles passing through each node within a graph. A triangle

consists of three nodes, each connected to the other two. The

importance of TC in graph analysis is to reveal important

structural properties and local connectivity patterns within net-

works [1]. TC is commonly used for community detection [1],

clustering coefficients [2], analyzing social networks [3], and

enhancing recommendation systems [3].

Accelerating the TC problem is beneficial for large-scale

analysis tasks, especially for large graphs containing millions

of vertices and edges that is common in graph processing

nowadays [4]. For example, social media companies, such as

Facebook [5] and LinkedIn [3], require analysis of social net-

work structure. In the network graph, each node presents one

user and connections between users are represented by edges.

In this case, triangles demonstrate a closed loop of connections

such as mutual friends. Nowadays, social network size can be

massive (e.g., LinkedIn has 990 million members [4]), and

analyzing the network using traditional computing methods

can be very time-consuming and power-consuming.

There are serval challenges to implementing an efficient TC

algorithm, since TC has a high memory-to-computation ratio,

which requires massive random memory access compared to

the amount of computation. The sparsity of the large-scale

adjacent matrix leads to irregular memory access, imbalanced

workloads, and degraded data locality. In addition, bitwise

operation on the binary elements requires a comprehensive ap-

proach to enhance both parallelism and bandwidth efficiency.

In this work, we propose HiTC to accelerate TC on HBM-

based FPGAs via software/hardware codesign with three major

contributions. To the best of our knowledge, this is the first

TC accelerator on FPGA using binary matrix multiplication.

1. We propose hardware-friendly reordering, tiling, and en-

coding techniques to handle random access and optimize

bandwidth utilization.

2. We design a streaming-based FPGA accelerator, which

exploits high bandwidth memory (HBM) and customized

computation pipelines to improve the overall performance.

3. Experimental results show that, running on the AMD/Xilinx

HBM-based Alveo U280 FPGA, HiTC outperforms the 24-

core CPU implementation with an 18.6x geomean speedup

(up to 669.8x), and exceeds the AMD/Xilinx Vitis TC

library on the same FPGA, with a geomean speedup of

8.6x (up to 24.1x).

The rest of the paper is organized as follows: Sec. II

covers the background and related work. Sec. III presents

our hardware/software codesign of HiTC. Sec. IV illustrates

experimental results and Sec. V concludes the paper.

II. BACKGROUND AND RELATED WORK

A. TC with Bitwise Operations

Numerous methods have been proposed to count trian-

gles, which can be divided into three categories: subgraph

matching approach, intersection approach, and (binary) matrix

multiplication method [6]. In this paper, we use the matrix

multiplication-based approach for TC, utilizing the efficiency

of bitwise operations and its high parallelism and scalability

for processing large graphs. Moreover, there is no study on

FPGA acceleration of the matrix multiplication method for

TC yet, leaving ample room for development in this area.

The matrix multiplication-based approach for TC is a class

of algorithms that uses an adjacency matrix to perform TC.

Let A be the symmetric adjacency matrix representation of an

undirected graph G(V,E). A[i][j] ∈ {0, 1} indicates whether

there is an edge between vertices i and j. A2[i][j] and

A3[i][j] shows the number of paths that start from i to j
using two steps and three steps, respectively. In this case, the

value on the diagonal value, A3[i][i], indicates the number of

triangles starting from Vi. After excluding repeated triangles,

the number of unique triangles of graph G can be calculated:

TC(G) = (
∑

diag−1(A×A×A))/6 (1)

Azad, et al. [7] further improves this method with a masking

procedure to reduce computation complexity:

TC(G) = nnz(A ∩ (L× U))/2 (2)

where L is the lower triangular part of A, and U is the upper

triangular part of A, with all zeros on the diagonal. nnz stands

for number of nonzeros.

In this algorithm, L×U produces wedges of the graph, and

A∩(L×U) filters out wedges that are not connected by a third

edge. A further improvement is proposed by Sandia [6] which

replaces L and A by U . Using the U instead of A to do the

element-wise multiplication counts each triangle exactly once

instead of twice. Thus Sandia [6] reduces both input data size

and the number of required operations:

TC(G) = nnz(U ∩ U2) (3)

As U is a sparse binary matrix, multiplication in this
formula can be replaced with AND operation in hardware.
Accumulation can be done with a bit counter (BitCount):

TC(G) = BitCount(AND(U [i][∗], U [∗][j]T)), ∀U [i][j] = 1 (4)

B. Related Work

Recently, the TC problem has been accelerated across

different platforms, including CPUs, GPUs, and FPGAs.

Several techniques have been proposed to accelerate TC

on CPUs, including multi-threading and vectorization. For

example, TCM [8] employs a matrix multiplication-based ap-

proach with row-wise partitions, enabling parallel processing

of sub-matrices. However, various sub-matrices might access

the entire graph concurrently, necessitating shared memory

space among multiple processor cores. TC-SMID [9] utilizes

fast vector instruction implementations of set operation-based

algorithms to directly compute the exact triangle count.

For GPU implementations, bbTC [10] uses a blocked-based

matrix multiplication with rectilinear partitioning. However,

this way of partition requires complex preprocessing to find the

suitable cutting position. HPETC [11] takes advantage of a set

intersection operation implemented relying on bitmaps and on

atomic operations. Tom et al. [12] implement the map-based

algorithm using GraphMat, a parallel and distributed graph

processing framework. In general, GPUs are power-hungry and

are not friendly for bitwise operations.

The work by Huang et al. [13] is the only existing paper

for TC on FPGA. It uses the intersection-based method for

triangle counting, which iterates over each edge and finds

common elements from two adjacency lists of head and tail

nodes. However, we could only synthesize by not being able

to build the design based on their source code. In addition,

AMD/Xilinx Vitis TC library [14] also uses an edge-based

set intersection way for TC. In Sec. IV-B, we will present a

quantitative comparison to the multicore CPU implementation

and Vitis TC library FPGA implementation.

C. Challenges for Accelerating TC on FPGAs

FPGAs possess great flexibility and power efficiency. How-

ever, the TC accelerator design on FPGAs introduces more

challenges in addition to the ones explained in Sec. I.

Input:

Edge List

Adjacency Matrix

A (compressed)

Reordering

Graph

Upper

Triangle U

Tiling
3 duplicate

matrices

Data Encoding

& Packing
Hardware

Fig. 1: The overview of the proposed HiTC software workflow.

1. Limited On-chip Memory: Limited on-chip memory re-

sources on FPGA are insufficient to buffer large graph

matrices, requiring an efficient tiling scheme.

2. Data Format and Hardware Codesign: Widely used

compressed formats, such as CSR (compressed sparse row),

are not friendly for bursting memory accesses and computa-

tion parallelism. Customized data format and corresponding

accelerator pipeline design are necessary to improve the

computing throughput.

3. HBM Bandwidth Utilization: HBM-equipped FPGA pro-

vides a high bandwidth potential, along with the challenge

to fully utilize it. An efficient accelerator design should

optimize bandwidth across all HBM channels.

III. HITC DESIGN

To address the aforementioned challenges of TC accelerator

design, HiTC takes a hardware/software codesign approach.

The software part preprocesses the data stored in CSR and

transforms it into a customized hardware-friendly format

through graph reordering, tiling, and encoding. While in the

hardware part, we design a streaming accelerator on the FPGA,

which exploits the off-chip bandwidth and customizes the

computing pipeline for the bitwise computation.

A. Hardware-friendly Software Preprocessing

Fig. 1 shows the software preprocessing workflow of HiTC

codesign, which includes graph reordering, tiling, and encod-

ing, to enhance the computation efficiency on hardware.

Graph Reordering: The distribution of elements inside an

adjacency matrix is usually diverse with poor data locality.

We use the minimum degree order (MDO) algorithm [15] to

sort the nodes in the ascending order of their degree value

and rename the node ID of the graph. As depicted in Fig. 2,

compared to the original adjacency matrix, MDO helps gather

most of the nonzero elements into the right corner.

Data Tiling and Encoding: As will be explained later in

Fig. 5, the reordered adjacent matrix is duplicated into A, B,

and C. While A is streamed in, we need to buffer B and C.

Buffering sparse matrices on-chip is nontrivial, as traditional

2D tiling for dense matrices uses a fixed tile shape and buffers

many zeros. To address the limited on-chip memory issue, we

propose a dynamic tiling technique to tile as many nonzero

elements as it can until it reaches the hardware buffer size

limit. Fig. 3 shows an example with a hardware buffer size

limit of 2×2. So, in a tile, the distribution of nonzero elements

in any row and any column will not exceed 2. In our actual

design, the buffer size is 512 nonzero rows × 31 nonzero

columns (due to data encoding).

0 1 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0

0 0 1 0

0 1 0

0 0

0

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(a) Original Graph

4

01

5

3

62

7

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 1 0 0

0 1 1 1 1

0 0 1 1

0 1 1

0 0

0

(b) Minimum Degree Ordering

4

36

5

0

72

1

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

0

Fig. 2: Graph reordering: minimum degree order (MDO).

Offset 0 0 0 2 4

Col index 4 5 4 5

Tile # 0 in CSR format

Stream 0: row 0

Stream 1: row 1

Vld

1b

C idx

15b

Vld

1b

C idx

15b

Vld

1b

R idx

15b

Y 5 Y 4 Y 2

encoding

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Vld

1b

C idx

15b

Vld

1b

C idx

15b

Vld

1b

R idx

15b

Y 5 Y 4 Y 3

1 element = 16bit

Fig. 3: Customized sparse matrix tiling and encoding example.

Moreover, to improve the off-chip bandwidth utilization,

each row will be encoded into a fixed-width packet including

a row index and multiple column indices. Both row index and

column indices are 15 bits and 1 valid bit is appended to each

index. In this example in Fig. 3, each tile will be encoded

into 2 packets where each packet has 2 column indices. In our

actual design, the width of each packet is 512 bits (i.e., 31

columns per row) to fully utilize the HBM bandwidth.

B. Hardware Design

1) Overview Architecture: Fig. 4 illustrates the overall

architecture of our streaming-based accelerator. The hardware

accelerator incorporates multiple pairs of load units and fine-

tuned processing element groups (PEGs) to enable efficient

parallel processing. Each load unit reads the preprocessed data

from HBM banks in a streaming fashion, which fully utilizes

the bandwidth of each HBM bank. By scaling up the number

of pairs, HiTC can maximize bandwidth utilization across

more HBM banks. In each PEG, the data is processed tile

by tile. Multiple PEGs can process different tiles in parallel,

generating partial results, which are then accumulated by an

adder tree to get the total number of triangles.

Adder

TreeHBM

Load Tiles

A B C

PEG N
Load Tiles

A B C

…PEG 0

x N x N

Resultstreams

Filter

Buffer

C tile

Buffer B

Buffer B

LUT

LUT

x 31
…

x 31

Adder

Tree

B in

A in

C in

Segment

Segment

…

x 31 out

…
Fig. 4: Overall streaming architecture of HiTC.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

C [M][N] A [M][K] B [K][N]

X⊙

0 0

0 0

0 0

1 1

0 0 0 0

0 0 0 0

1 1 0 0

1 1 1 1

1 1

1 1

0 0

0 0

Add results

2

2
4

Processing Order

Buffer C Buffer BStreaming A

1

Data segment

1 1

1 1

C_rIdx

= A_rIdx A_cIdx

= B_rIdx

1 1

1 1

1 1

1 1

2

3

4

PE 1

PE 2

Fig. 5: Processing order inside each PE group (PEG).

2) Processing Order of Individual PEG: The detailed pro-

cessing order in each PEG is shown in Fig. 4 and Fig. 5.

First, one B tile and one C tile are buffered on-chip in

parallel. The B tile is duplicated to 31 buffers by chain-

based broadcasting, which is more efficient than one-to-all

broadcasting due to its better timing closure.

After that, tiles of A are read in a streaming fashion by

the filter module. This module checks A row indices against

the C buffer row indices: When a row match is found, the

corresponding row of buffer C is forwarded to all segment

modules. The column indices of in the current A row are used

to access rows of B buffer, where each row of B is forwarded

to one segment module. Since each packet of A has up to

31 columns, each PEG has 31 PEs (i.e., 31 buffers for B, 31

segments, and 31 LUT modules) running in parallel.

Next, we need to check the number of common bits in the

pair B and C rows. To check multiple elements concurrently,

we decode the B and C rows into a dense representation.

To reduce resource usage and avoid unnecessary checking for

zero elements, we perform data slicing on each pair of B row

and C row into multiple segments, and skip those segments

with all zeros. To check the number of common bits in each

pair of B and C nonzero segments (with the same segment

ID), we use a lookup table (LUT) to perform this computation

in one cycle (parallelism per LUT equals segment size).

Buffer Tile

Mask(1b) Index (496b)

0

1

0

0

…

Valid Col

1b 15b

Valid Col

1b 15b
…

Y 4 Y 5 …
Y 4 Y 5 …
N 0 N 0 …

512

18k

31 x 16b

0

0

1

1

…

18k

Addr (9b)

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 6: Hardware component: buffer module design.

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Segment Module

End row flag (1b) Seg ID (2b) DATA(2b)

1 2

get 1 segment packet

Input: 1 row data from buffer tile

Valid Col

1b 15b

Valid Col

1b 15b

…

Y 4 Y 5 …

31 x 16b

segment

112
Fig. 7: Hardware component: data segment module design.

Finally, results produced by all LUTs within a PEG are

accumulated by an adder tree. In the example in Fig. 5, each

LUT counts 2 triangles and the final result of this PEG is 4.

3) Buffer Scheme: To maximize the data reuse and guaran-

tee efficient parallel accesses on buffered tiles, HiTC incorpo-

rates a buffering scheme addressing this challenge. Each buffer

module has three components: an index array, an address array,

and a mask array to store tiles B and C as shown in Fig. 6.

Each tile is buffered packet by packet and the index array

stores the actual preprocessed packets. Due to the sparsity, the

index array may not store consecutive rows. To address this

problem, we propose a combination of mask array and address

array to simplify the process of finding a corresponding row.

For each preprocessed packet read from HBM, it first checks

the address array to get the corresponding row ID in the index

array. Then it sets the corresponding bit of the mask array to

1. The size of the mask array (and the index array) is set as

18K to fully utilize an 18Kb BRAM bank. In other words,

each tile has no more than 18k rows.

Then the column indices inside this packet are stored in one

row of the index array. Due to limited on-chip memory size,

we set the depth of the index array to 512, i.e., it can store

a maximum of 512 packets. The row ID of the index array

can be represented by 9 bits and this row ID is stored in the

address array. When loading a new tile, we only need to reset

the mask array and there is no need to reset the whole buffer.

4) Data Segment Design: Column indices in each row of

the index array could be discontinuous, making it hard to

compare nonzero elements of B row and C row, and find the

common bits in parallel. To address this challenge, we decode

each pair of B row and C row into multiple comparable

(nonzero) dense segments through a segment module.

Each row in a buffer can be decoded and divided into

Algorithm 1 Software to hardware scheduling in HiTC.

1: Input: (1) 3 copies of matrix U: A[M][K], B[K][N], C[M][N];
(2) matrix hyper-parameters: mcut, ncut, kcut; (3) Q pointer

2: Output: number of triangles: tc (initialized to 0)
3: for k = 0 to kcut do ▷ go through each cut in k dimension
4: for n = 0 to ncut do
5: buffer tile Bkn ▷ maximize data reuse of Bkn

6: for m = 0 to mcut do
7: buffer tile Cmn ▷ data reuse for Cmn as well
8: for p = 0 to #PEG do ▷ run in parallel
9: for i = Qmk to Qmk+1 do ▷ nonzero rows of Amk

10: stream in Amk[i]
11: if Cmn[i] is not empty then
12: slice Cmn[i] into a set of segments SegsC
13: for j = 0 to 31 do ▷ 31 PEs run in parallel
14: search corresponding row in Bkn

15: slice the B row into a set of segments SegsB
16: tc← tc + segment_LUT(SegsB , SegsC)

multiple fixed-size nonzero dense segments. As an example

shown in Fig. 7, each row of the tile is divided into 3 segments

with size of 2. When we check the column indices in the index

array, only the last segment has nonzero elements. Then, this

segment is packed with 1) a 1-bit end row flag indicating

whether it is the last segment on this row of tile, 2) a 2-

bit segment ID storing the segment index, and 3) a 2-bit

DATA representing all elements inside this segment in a dense

format (i.e., including all 0s and 1s). In the actual design, we

choose the segment size to be 16 elements, i.e., the length of

DATA is 16-bit. Since we use 15 bits to represent a column

index in a tile (Sec. III-A), the length of segment ID is 11-bit

(15− log216). The segment ID can be calculated as:

segment_ID = column_index/segment_size (5)

After the extraction of nonzero segments of B row and C row,

we use LUT to compare the segments with the same segment

ID and count the number of common bits in one cycle.

C. Software to Hardware Scheduling

Algorithm 1 outlines the pseudo-code for the software to

hardware scheduling in HiTC. Initially, the input graph is

represented as the upper triangle part of an adjacency matrix

format, with three copies named matrix A[M][K], B[K][N],
and C[M][N], shown in Fig. 5. To handle large-scale graphs,

the three input matrices are tiled into sub-matrices. To optimize

the on-chip buffering of B tiles, we aim to reuse the current

B tile as much as possible, which dictates the computation

order across the tile level (lines 3-5).

After buffering B (line 5) and C (line 7) tiles on-chip,

nonzeros within a tile of A are streamed into PEGs from

multiple HBM channels (lines 8-10). Each PEG is cyclically

assigned a distinct set of A rows, and a pointer list Q (line 9)

tracks the tile position inside matrix A.

Inside each PEG, it filters the current A row by checking

if the corresponding C row is not empty (line 11); if it is

not empty, the corresponding C row is decoded and sliced

into segments SegsC (line 12), as explained in Sec. III-B4.

After filtering, we use the column indices of the nonzeros in

TABLE I: Selected graph dataset from SuiteSparse.

Dataset # Vertices # Edges Density

kron_g500-logn17 131,070 5,113,985 5.95E-04

TEM181302 77,360 3,828,854 1.28E-03

raefsky6 6,316 134,443 6.74E-03

bundle1 10,581 380,160 6.79E-03

facebook 4,039 88,234 1.08E-02

mouse_gene 45,101 14,461,095 1.42E-02

mycielskian15 24,575 5,555,555 1.84E-02

mycielskian14 12,287 1,847,756 2.45E-02

mycielskian13 6,143 613,871 3.25E-02

human_gene1 22,283 12,323,680 4.96E-02

raefsky1 36,417 291,034 4.39E-04

human_gene2 14,340 9,027,024 8.78E-02

the current A row to search the corresponding rows in the B
buffer. Since there are 31 columns in an A packet, we use 31

PEs to do the search and processing in parallel (lines 13-16).

Inside each PE, the found B row is also decoded and sliced

into segments SegsB . After that, the segment_LUT function

(line 16), receives the two sets of segments for B and C
in a streaming fashion and outputs the number of common

nonzero bits, as explained in Sec. III-B4. Finally, these results

are accumulated to get the final number of triangles.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate HiTC on the AMD/Xilinx HBM-based Alveo

U280 FPGA using Vitis HLS and Vitis 2021.2. We compare

the HiTC performance with the open-source Vitis TC FPGA

library [14] on the same FPGA and an optimized 48-thread

CPU implementation running on two 12-core Intel Xeon Silver

4214 CPUs. As shown in Table I, our evaluation includes 12

real-world graphs from the widely used SuiteSparse matrix

collection [16], ranging from 4K to 131K vertices and 88K

to 14M edges, with densities from 4.39E-04 to 8.78E-02. We

measure the HiTC performance (with 6 PEGs) on the actual

FPGA board and exclude the preprocessing time. And we use

the post place-and-route report for the resource utilization.

B. Comparison to Multicore CPU and Prior FPGA Design

Fig. 8 compares our HiTC performance against a 24-core

CPU implementation and the Vitis TC FPGA library [14]

design on real-world graphs. It presents the relative speedup

with the single-core CPU implementation as the baseline,

where higher values indicate better performance. We evaluate

both HiTC and Vitis TC library on the Alveo U280 FPGA.

The other FPGA implementation proposed by Huang [13] is

omitted since it only provides synthesis results.

First, the 24-core multi-core CPU implementation shows

a geometric mean speedup of approximately 8x across 12

datasets over the single-core CPU, ranging from 2x to 20x.

The speedup of the multi-core CPU is limited by irregular

162 150 134

181 922 2364 133 2767 148

0

10

20

30

40

50

60

70

80

90

100

R
e

la
ti

v
e

 S
p

e
e

d
u

p
 (

X
)

24-core CPU

Vitis

HiTC

Fig. 8: Relative performance speedup comparison of 24-core

CPU, Vitis FPGA library design, and our HiTC on real-world

graphs. The baseline is single-core CPU performance.

data dependency, memory bandwidth, and resource contention.

These factors can reduce the overall throughput.

Second, the Vitis TC library design outperforms the 24-core

CPU implementation, achieving speedups ranging from 2x to

162x over the single-core CPU.

Third, our HiTC design achieves remarkable speedups rang-

ing from 36x to 2,767x over the single-core baseline. Three

datasets, mouse_gene, human_gene1, and human_gene2, ex-

hibit speedups exceeding 900x compared to the baseline, with

densities of 1.42E-02, 4.96E-02, and 8.78E-02, respectively.

This is because those datasets have a more balanced distri-

bution of nonzero elements after tiling, and various PEGs

can have similar (balanced) workloads. The speedup on other

datasets such as the Facebook dataset shows less improvement.

For example, it achieves about 42x speedup on the Facebook

dataset. This dataset is a friend list on Facebook, where most

edges are dominated by a minority of vertices, leading to an

extremely imbalanced distribution of edges. Such distribution

results in imbalanced workloads and limits the performance.

Finally, on average (geomean), HiTC achieves an 18.6x

speedup over the 24-core CPU implementation, and an 8.6x

speedup over the Vitis TC library design on the same FPGA.

C. Resource Utilization and Design Frequency

TABLE II: HiTC resource utilization

Resource Utilization Freq.
(MHz)LUT FF BRAM URAM DSP

57.6% 34.8% 65.6% 69.6% 34.9% 211

Table II presents the resource utilization of our HiTC design,

in terms of Look-Up Tables (LUTs), Flip-Flops (FFs), Block

RAMs (BRAMs), Ultra RAMs (URAMs), and Digital Signal

Processors (DSPs) used in the Alveo U280 FPGA. The high

utilization of BRAM and URAM in HiTC mainly comes from

buffer modules: it has 6 PEGs and each PEG uses 32 buffer

modules, resulting in a total of 192 buffer modules in the final

design. LUTs are extensively utilized for bit-wise operations

in the PEGs.

To fully utilize the bandwidth of the 512-bit HBM channel

running at 450MHz, a hardware accelerator should operate at

more than 225MHz. HiTC achieves a very close frequency at

211 MHz due to timing closure and routing congestion issues.

821 2095 2462

922 2364 2767

882 2231 2617

0

20

40

60

80

100

120

140

160

180

200
R

e
la

ti
v

e
 S

p
e

e
d

u
p

 (
x

)

Seg size 8 (212MHz)

Seg size 16 (211 MHz)

Seg size 32 (204 MHz)

Fig. 9: Performance comparison for different segment sizes.

D. Ablation Study on Segment Size

Among HiTC configurations, the segment size primarily

determines the trade-off between performance and resource

usage. PEGs with larger segment sizes can process more

nonzero elements in parallel, but require more resources. In

the prior subsections, we showed the results for the default

segment size of 16 and now we do an ablation study.

Fig. 9 compares the relative speedup of HiTC over the

single-core CPU baseline, with three data segment sizes rang-

ing from 8 to 32. It confirms that HiTC with a segment size of

16 reaches the best performance, which is our default choice.

Also note that, as the segment size increases, the resource

utilization increases, and thus the hardware frequency degrades

due to placement and routing congestion.

V. CONCLUSION

In conclusion, we have presented HiTC, the first matrix-

multiplication-based triangle counting accelerator on FPGAs.

To address the random access issues and optimize the locality

and bandwidth utilization, we have proposed the hardware

friendly graph reordering, sparsity-aware tiling, and encoding

techniques. Building on top of that, we have designed a

streaming-based accelerator architecture on HBM-based FP-

GAs. Inside this streaming architecture, we have also pro-

posed efficient buffering techniques to accommodate random

distribution of nonzero elements within fixed on-chip buffers.

Leveraging the characteristics of binary sparse matrix multipli-

cation, we have customized the computation pipeline to decode

and segment sparse data into compact dense representations,

and leverage lookup tables to compute the number of triangles.

Experiments with the widely used SuiteSparse dataset show

that, HiTC achieves a geometric mean speedup of 8.6x (up

to 24.1x) over the Vitis TC FPGA library on the same

AMD/Xilinx Alveo U280 FPGA. Compared to the software

implementations on two 12-core Intel Xeon Silver 4214 CPUs,

HiTC achieves a geometric mean speedup of 18.6x (up to

669.8x). We plan to open source our design in future work.

VI. ACKNOWLEDGEMENT

This work was supported in part by NSERC Discov-

ery Grant RGPIN-2019-04613, DGECR-2019-00120, Alliance

Grant ALLRP-552042-2020; CFI John R. Evans Leaders Fund

and BC Knowledge Development Fund; Huawei Canada and

AMD-Xilinx.

REFERENCES

[1] K. Sotiropoulos and C. E. Tsourakakis, “Triangle-aware spectral spar-
sifiers and community detection,” in Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, ser.
KDD ’21, 2021, p. 1501–1509.

[2] T. G. Kolda, A. Pinar, T. Plantenga, C. Seshadhri, and C. Task, “Counting
triangles in massive graphs with mapreduce,” SIAM Journal on Scientific

Computing, vol. 36, no. 5, pp. S48–S77, 2014.
[3] LinkedIn, “People you may know feature,” https://www.linkedin.com/

help/linkedin/answer/a544682/people-you-may-know-feature-,
accessed: [2024-03-21].

[4] Hannah Macready, “51 linkedin statistics you need to know in 2024,”
https://blog.hootsuite.com/linkedin-statistics-business/, accessed: [2024-
03-21].

[5] Facebook, “Facebook,” https://www.facebook.com/, accessed: [2024-03-
21].

[6] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam, “Fast linear algebra-based triangle counting with kokkosker-
nels,” in 2017 IEEE High Performance Extreme Computing Conference

(HPEC), 2017, pp. 1–7.
[7] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and

enumeration using matrix algebra,” in 2015 IEEE International Parallel

and Distributed Processing Symposium Workshop, 2015, pp. 804–811.
[8] J. Shun and K. Tangwongsan, “Multicore triangle computations without

tuning,” in 2015 IEEE 31st International Conference on Data Engineer-

ing, 2015, pp. 149–160.
[9] K. Ravichandran, A. Subramaniasivam, P. Aishwarya, and N. Kumar,

“Chapter eight - fast exact triangle counting in large graphs using simd
acceleration,” in Principles of Big Graph: In-depth Insight, ser. Advances
in Computers, R. Patgiri, G. C. Deka, and A. Biswas, Eds. Elsevier,
2023, vol. 128, pp. 233–250.

[10] A. Yasar, S. Rajamanickam, J. W. Berry, and U. V. Catalyurek, “A block-
based triangle counting algorithm on heterogeneous environments,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 2,
pp. 444–458, 2022.

[11] M. Bisson and M. Fatica, “High performance exact triangle counting on
gpus,” IEEE Transactions on Parallel and Distributed Systems, vol. 28,
no. 12, pp. 3501–3510, 2017.

[12] A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman,
M. Kodiyath, I. Hur, F. Petrini, and G. Karypis, “Exploring opti-
mizations on shared-memory platforms for parallel triangle counting
algorithms,” in 2017 IEEE High Performance Extreme Computing

Conference (HPEC), 2017, pp. 1–7.
[13] S. Huang, M. El-Hadedy, C. Hao, Q. Li, V. S. Mailthody, K. Date,

J. Xiong, D. Chen, R. Nagi, and W.-m. Hwu, “Triangle counting
and truss decomposition using fpga,” in 2018 IEEE High Performance

extreme Computing Conference (HPEC), 2018, pp. 1–7.
[14] AMD/Xilinx, Vitis Libraries - Triangle Count, 2022, accessed:

2024-02-17. [Online]. Available: https://xilinx.github.io/Vitis_Libraries/
graph/2022.1/guide_L2/manual/triangleCount.html

[15] H. M. Markowitz, “The elimination form of the inverse and its appli-
cation to linear programming,” Management Science, vol. 3, no. 3, pp.
255–269, 1957.

[16] University of Florida Sparse Matrix Collection. The suitesparse matrix
collection. [Online]. Available: https://sparse.tamu.edu/

