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Abstract Acknowledging students’ difficulty in general-

izing in general and expressing generality in particular, we

assert that the choice of examples that learners are exposed

to plays a crucial role in developing their ability to gen-

eralize. We share with the readers experiences in which

examples supported generalization, and elucidate the

strategies that worked for us in these circumstances, pre-

suming that similar strategies could be helpful with other

students in other settings. We further share several pitfalls

and call for caution in avoiding them.

1 Introduction

‘‘Generalization has to do with noticing patterns and

properties common to several situations’’ (Mason, 1999, p.

9). In other words, generalization is afforded by consider-

ing particular examples. The choice of these examples is

influenced by a variety of factors that depend on the spe-

cific context in which the task is set. In this article we first

describe specific features of examples that guide learners

towards generalization. We focus on two such features: big

numbers and numerical variation. We then consider fea-

tures of counterexamples that help in refuting students’

generalizations. Finally, we exemplify potential pitfalls in

the choice of examples that may result in wrong general-

ization. When discussing choices or sets of examples it is

appropriate to introduce the notion of example space

(Watson & Mason, 2005), that is, the pool from which

examples are drawn. In this article we explore the con-

nection between example spaces and their role in

supporting or impeding generalization.

2 Background

The importance of generalization in learning has been long

acknowledged. Davidov (1972/1990) indicated that

‘‘Developing children’s generalizations is regarded as one

of the principal purposes of school instruction’’ (p. 10).

Focusing on generalization as it pertains to learning

mathematics, Lee (1996) suggested that ‘‘algebra, and

indeed all of mathematics is about generalizing patterns’’

(p. 103). Further, Mason (1996) claimed: ‘‘Generalization

is a heartbeat of mathematics. If the teachers are unaware

of its presence, and are not in the habit of getting students

to work at expressing their own generalizations, then

mathematical thinking is not taking place’’(p. 65).

However, acknowledging the importance of general-

ization and its centrality to mathematical experience, it has

been widely recognized that mathematical generalization is

a challenging task for many learners (e.g. Bills, Ainley &

Wilson, 2006; Lee, 1996, Stacey, 1989; Stacey & McGr-

egor, 2001; Becker & Rivera, 2005). This realization posed

the following, at times implicit, question to mathematics

educators: How is it possible to guide students towards

successful generalizations?

In order to address this question, a more refined

understanding of what mathematical generalization entails

was essential. As such, the efforts of researchers focused on

three possible, at times overlapping, directions: (1) classi-

fying different kinds of generalization, (2) classifying

different approaches of students towards generalizing,

including analysis of their errors, and (3) suggesting
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different instructional methods of helping students gener-

alize and exploring the efficiency of these methods.

In classifying kinds of generalization as a process

researchers distinguished between empirical and structural

(Bills and Rowland, 1999) or empirical and theoretical

(Dörfler, 1991). Empirical generalization is based on rec-

ognizing common features or common qualities of objects.

According to Dörfler, empirical generalization entices

over-reliance on particular examples and in such is lacking

a specific goal to decide what is essential in determining

qualities that are relevant for generalization. In fact, Dav-

idov (1972/1990) recognized empirical character of

generalizations made by students as one of the sources of

difficulties in mastering instructional material. In contrast,

in theoretical generalization, essential invariants are iden-

tified and substituted for by prototypes. Generalization is

then constructed through abstraction of the essential in-

variants. In a similar fashion, Radford (2003) distinguished

between factual, contextual, and symbolic generalization.

Factual generalization generalizes numerical action, while

contextual generalization also generalizes the objects of

these actions. Symbolic generalization involves under-

standing and utilizing algebraic language. While many

researchers criticized empirical generalization, Radford

(2003) suggested that factual generalization lays an

important foundation to more sophisticated forms of

generalization.

In classifying kinds of generalization as an outcome,

Harel and Tall (1991) distinguished between (1) expansive,

where the applicability range of an existing schema is

expanded, without reconstructing the schema; (2) recon-

structive, where the existing schema in reconstructed in

order to widen the applicability range; and (3) disjunctive,

where a new schema is constructed when moving to a new

context. Students engaged in disjunctive generalization

may construct a separate procedure for a variety of cases

and fail to consider earlier examples as special cases of the

general procedure. Furthermore, expansive generalization

is cognitively easier than reconstructive generalization, but

may be insufficient in the long run.

In describing and analyzing students’ approaches, Sta-

cey (1989) noted that the majority of 9–13 years old

students in her study, when generalizing a linear pattern,

used an erroneous direct proportion method, that is,

determining the n-th element as the n-th multiple of the

difference. Similar results were reported by Zazkis and

Liljedahl (2002), where preservice teachers used a ‘‘mul-

tiple of constant difference’’ approach when finding a large

element in a given arithmetic sequence, ignoring a possible

‘‘shifting’’ of multiples. Orton and Orton (1999) reported

the tendency of students to use differences between the

consecutive elements in a sequence as their preferred

method, and focusing on recursive approach, that

frequently prevented them from seeing the general struc-

ture of the elements.

Rivera and Becker (2005) classified students’ methods

in generalizing a pattern as figural, numeric and pragmatic,

based on the similarity they recognize in objects. They

noted that students who fail in generalizing start by

attending to numerical pattern, but do not recognize the

connection between different representations. This is con-

sistent with findings of Lannin (2005), who concluded that

students who use geometric schemes, that connect the

‘‘rule’’ with visual representation, were more successful in

generalizing than students whose scheme was primarily

numerical or those using a ‘‘guess and check’’ strategy.

It is natural that having recognized success of some

methods, while failure of others, researchers recommend to

focus on what brings success. Moreover, as a possible

means of encouraging successful generalization, Lannin

(2005) suggested that various students’ strategies and jus-

tifications thereof be brought for scrutiny in front of the

classroom for other students to examine their validity and

their power. Several researchers suggested the use of

spreadsheets as an instructional tool not only for develop-

ing generalization but also for expressing it in algebraic

terms (Ainley, Bills & Wilson, 2005; Bills, Ainley &

Wilson, 2006; Lannin, 2005).

Our study falls within the third direction. We share with

readers several strategies that worked for us, presuming

that similar strategies could be helpful with other students

in other settings. We further share several pitfalls and call

for caution in avoiding them. We note the observation of

Shiraman (2004), that ‘‘problem selection is crucial if the

teacher wishes to create problem solving experiences that

enable students to generalize’’ (p. 221). We extend this

observation by claiming: the choice of examples is crucial

in creating experiences that enable students to generalize.

3 Framework

The framework for our study, both philosophical and

methodological, can be best described—using John

Mason’s notion—as ‘‘the discipline of noticing’’ (Mason,

2002). It is a self-reflection of a group of researchers and

teacher educators on some elements of their practice,

noticing strategies that worked and identifying a common

thread in these strategies.

Following Mason (2006), our ‘‘method of enquiry is to

identify phenomena [we] wish to study, and to seek

examples within [our] own experience’’ (p. 43). We

describe and analyse episodes of instructional uses of

examples, with the expectation that the readers may

recreate and examine similar experiences in their own

practice. In doing so our goal is to ‘‘highlight or even
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awaken sensitivities and awarenesses for them’’ (Mason,

2006, p. 43) and help readers notice issues that have not

been noticed previously.

The philosophical underpinning of this method lies in

Mason’s (2002) proposal that ‘‘Discipline of noticing itself

constitutes research method which is particularly suited to

practitioners researching their own practice’’ (p. 183).

Within the discipline of noticing, ‘‘data consists of

moments of noticing’’ (Mason, 2002, p. 185). Further,

analysis involves examining accounts by, among other

methods, interrogating experience, and threading themes.

As such, in what follows we share examples of students’

successes and failures in generalizing, and of experts’

successes and failures in helping students generalize,

noticing commonalities in these examples. Some of our

examples emerged in our research, others in our teaching

practice, others in reflecting upon research of colleagues.

They emerged with students of different ages and gen-

ders, different backgrounds, different formal experience

(from high school students to preservice teachers), and

different levels of mathematical sophistication. And they

emerged in different settings—from classroom instruc-

tions, to conversation with groups of learners, to clinical

interviews. Nevertheless, a common theme was notice-

able: specific examples that students engage with may

support or impede their generalization. As such, our work

can be seen as an attempt to generalize about

generalizing.

4 Big numbers as a means towards generalization

In this section we explore ‘‘big numbers’’ and ‘‘small

numbers’’ in two contexts: algebra and elementary number

theory. We first show how the use of ‘‘big’’ numbers can

support generalization. We then show how a habitual use of

‘‘small’’ numbers may result in an inappropriate general-

ization and suggest remediation using ‘‘big’’ numbers.

Following these illustrations we address the natural ques-

tion of ‘‘what numbers are big?’’

4.1 Algebra: expressing generality in a pattern

Julie was a preservice teacher that participated in a course

‘‘Foundations of Mathematics for Teachers’’, which is a

core course for teaching certification at the elementary

school level. ‘‘Algebra’’, as a separate topic, was not

included in the curriculum for this course; however, basic

fluency in generating and manipulating algebraic expres-

sions was expected throughout the whole course.

Moreover, a variety of tasks presented to students in this

course required the generalization of patterns, where

generalizations were expected to be expressed with stan-

dard algebraic symbols. Julie, like the majority of students

enrolled in this course, did not perceive herself as mathe-

matically inclined. She experienced considerable difficulty

in generating and interpreting algebraic notation. In fact,

she believed that there was no need to know algebra—

which is thought of as a high school topic—for those who

are seeking careers in working with ‘‘young kids’’.

In the excerpt of the interview presented below Julie was

engaged in the following task:

Consider the following pattern:

P1 = 2 · 3

P2 = 3 · 4

P3 = 4 · 5 and so on.

What is P100? What is Pn?

Julie’s first attempt at the task was to express the first

numbers of the pattern as 6, 12, 20, 30, 42..., and to note the

increasing sequence of differences. However, as evident in

the interview excerpt below, when requested to consider

P100 she seemed to note the explicit pattern of factors.

Interviewer: Can you write an expression for Pn?

Julie: I’m not sure what Pn is.

Interviewer: It’s just a way to refer to the n-th number in

our pattern. See, we called our first number P1, the

second P2 and so on, so we shall call 75th number P75, n

can be any number...

Julie: So the answer will depend on the number.

Interviewer: Can you write down an expression, that

depends on n, that will tell us what Pn is?

Julie: I’m not sure how

Interviewer: OK. Suppose n = 100. What is Pn if n is

100

Julie: It’s 10,100. Sorry, wait, [using a calculator] it’s

10,302, yea, 10,302.

Interviewer: How did you get it?

Julie: 101 · 102 is 10302, I first did 100 · 101, but I

should go one further.

Interviewer: What if n is 173?

Julie: So it will be 173 times, no, 174 times 175, will be

30,450.

Interviewer: Could you please write an expression for

P173, not the number itself, but the way to get it

Julie: [writes 174 · 175]

Interviewer: So what about n, can you write an

expression for n?

Julie: It’s the next one times the next one, but you give

me n, then I will do the timesing.

Interviewer: OK, n is 3100.
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Julie: [tries to plug numbers into calculator]. I don’t

know what it is.

Interviewer: It is 3100. You don’t have to calculate it. Just

write an expression using this number.

Julie: You need the next one.

Interviewer: Right. You need the next one. What will it

be?

Julie: [hesitates] 3100 + 1?

Interviewer: So..?

Julie: [writes 3100 + 1 · 3100 + 2], Is this what you

want?

Interviewer: Does this tell you how to find the number?

Julie: Sort of, it doesn’t tell me what the number is.

Interviewer: It’s fine. All we need to know here is, if

your number is unknown, let’s call it n, how would you

get Pn

Julie: n + 1 times n + 2 you mean? Like this? (writes

down the expression, forgetting the parentheses)

Julie definitely recognized the pattern, but had difficulty

expressing generality in algebraic terms. She immediately

calculated P173 as 174 · 175, however, she saw 174 as

‘‘the next one’’ rather than 173 + 1. For many students

accustomed to algebra, the expression (n + 1)(n + 2)

appears easier to grasp than (3100 + 1) (3100 + 2). How-

ever, for those experiencing difficulties with expressing

generality in algebraic terms, consideration of a specific

big number can prove helpful.

It has been noted that even students who are comfortable

working with specific cases, have difficulty in expressing

generality. Following a teaching experience focusing on

algebraic generalization of patterns, Lee (1996) observed

that the ‘‘major problem was not in seeing a pattern, it was

in perceiving an algebraically useful pattern’’ (p. 95). Like

Lee’s students, Julie has no difficulty in ‘‘seeing the pat-

tern’’. Her difficulty is with expressing the pattern in terms

that can lead to generalization. Further, Zazkis and Lilje-

dahl (2002) noted that there is a significant gap between

recognizing a pattern and being able to express it alge-

braically. In their research students had little difficulty

describing a pattern verbally and making a prediction based

on the identified relationships in a pattern, but were not

able to provide a formal algebraic description.

Zazkis and Gadowsky (2001) suggested that many stu-

dents consider only the decimal representation of a number

to be ‘‘a number.’’ Other forms of number representation,

such as prime decomposition or sum of numbers, were

considered as ‘‘expressions’’ or ‘‘exercises,’’ rather than

numbers. Julie in the above excerpt experienced a similar

difficulty. She wanted her result to be a number, not a

numerical or algebraic expression. However, achieving a

numerical expression that was not to be computed assisted

Julie towards generating an algebraic expression. It

demonstrates how a pedagogical strategy of considering

‘‘big’’ numbers may serve as a stepping stone towards

expressing generality with algebraic symbols.

4.2 Algebra: attending to generality in short

multiplication

‘‘Big’’ numbers can be helpful in drawing students’ atten-

tion to underlying structure in algebraic expressions.

Consider for example the difference of squares in

ð2x� 3yÞ2 � ðxþ 3yÞ2:

When a request to simplify this expression was

presented to high school students, there was an almost

instinctive desire to remove the parentheses by first

computing the squares of the sum and the difference.

Indeed, when numbers are small, there is no apparent

advantage in explicitly attending to the structure of

difference of squares. However, students generated much

more appreciation for this general structure when the

chosen numbers were not quite ‘‘big’’, but just bigger, such

as

ð26x� 15yÞ2 � ð24xþ 15yÞ2

or

ð255a� 15bÞ2 � ð245aþ 15bÞ2:

Those who attended to the difference of squares were

able to simplify the expressions significantly faster and

without a calculator. This encouraged other classmates to

employ this approach as well.

4.3 Prime numbers: generalizing from prior experience

There are infinitely many primes. Consequently, there are

many more ‘‘large primes,’’ than ‘‘small primes,’’

regardless of how ‘‘large’’ and ‘‘small’’ are defined.

However, in school students seldom see an example of a

prime number which is larger than 100. In fact, most of

the examples are limited to primes below 31. Exercises

involving prime decomposition usually result in finding

‘‘small’’ prime factors such as 3, 5 or 7. Exposure to

these, and only these, examples leads to at least two

incorrect generalizations about primes: prime numbers are

small and every composite number should have a small

prime factor. These beliefs are often not mentioned

explicitly, but they prevail in students’ responses to a

variety of tasks. Further, these beliefs seem to co-exist

with participants’ awareness of the existence of infinitely
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many primes as well as the existence of very large prime

numbers. Prior research documented a variety of excerpts

that illustrate these incorrect generalizations (Zazkis &

Campbell, 1996; Zazkis & Liljedahl, 2004).

As an example, we consider here an excerpt from the

clinical interview with Tanya, a preservice elementary

school teacher. She responded to the question of whether

391 was divisible by 23 by dividing 391 by a few ‘‘small’’

primes and claiming that 391 was prime (note that

391 = 17 · 23) (Zazkis & Campbell, 1996).

Tanya: I don’t know. I guess, like I, um, like I was

saying with, I know there’s a way to do it, prime

factorization, and I know that 23 is a prime number, but I

guess, um, I was assuming, for some reason, that as long

as 391 was not a prime number, it would have a factor

smaller than 23, a prime factor smaller than 23.

Interviewer: And is there a reason why, why you thought

that way?

Tanya: Um, I guess because in, in my experience in most

cases, a large number, relatively large number like 391,

would have, well any number not even a large number,

any number has um some small prime factors in addition

to whatever else we have, we may have a large number,

prime factors like 23, but they also tend to have things

like 2 and 3 and 5 and 7.

Interviewer: Well what if we took 2 very large prime

numbers?

Tanya: Um hm...

Interviewer: And multiplied them together to get another

number?

Tanya: Um hm.

Interviewer: Would that number have a small prime in

its prime factorization?

Tanya: (Pause) Umm, no, I don’t think so.

[...]

Tanya: I guess it’s probably just more experience than

anything, but it just seems to me that when you factor a

number into its primes, I mean what you’re doing is,

you’re trying to find the smallest, I mean numbers that

can no longer be broken into anything smaller aside from

1 and itself, so that, I guess it’s just the whole idea of

factoring things down into their smallest parts...

Interviewer: Um hm.

Tanya: I guess gives me the idea that those parts are

themselves going to be small.

As stated earlier, similar inappropriate generalizations

with respect to ‘‘small primes’’ were worded explicitly

only occasionally, as in Tanya’s case, but could be

derived from students’ actions and approaches to problem

solving.

According to Tall and Vinner (1981) an individual’s

concept image is not constant, it may grow and change

with experience and its various parts develop at different

times and in different ways. We suggest that specific

examples of the concept to which students are exposed

are part of such experience. If we agree with the claim

that the students’ concept image is influenced by exam-

ples, then a reasonable approach to reconstructing their

image is to create a richer set of examples, that is, to

extend the example space from which generalizations are

drawn. The availability of calculators makes this

approach possible. We advocate calculator supported

activities in checking for primality of large numbers and

decomposing composite numbers into ‘‘large’’ primes.

Unfortunately, the majority of textbook exercises and

examples are still focusing on single digit prime numbers

and as such reinforcing the mis-generalization of primes

being ‘‘small’’ rather than contributing to its

reconstruction.

4.4 What is a ‘‘big’’ number?

Of course, a natural question arises: what number is big?

What prime is large? While there is no deterministic

answer—but rather contextual and situational—an analysis

of our previous examples suggests a working definition.

Our initial example considers a number to be ‘‘big’’ if it is

beyond the computational abilities of a hand-held calcu-

lator. In our second example numbers are ‘‘big’’ simply if

they do not invite immediate computation and direct

learners to reconsider structure more carefully. In our third

example a prime is ‘‘large’’ if it is neither 2, 3, 5 or 7 nor if

it is instantly recognized as prime, that is, it does not

belong to the repertoire of ‘‘primes’’ immediately retracted

from one’s memory.

An underlying theme that is associated with the different

uses of ‘‘big’’ numbers is numerical variation. Big numbers

were chosen to accentuate the invariant structure; however,

numerical variation is not restricted solely to the use of big

numbers, as we describe in the next section.

5 Numerical variation as a means towards recognizing

general structures

In this section we show how numerical variation—that is,

changing numbers in the tasks while keeping the structure

invariant—is a helpful strategy on a pathway to a solution.

To exemplify numerical variation as a means towards

generality we consider two classic puzzles and two rather

conventional, but troublesome problems.
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5.1 On chickens, eggs and grains

Consider the following well-known riddle:

If a hen-and-a-half lays an egg-and-a-half in a day-

and-a-half, how many days does it take one hen to lay

one egg?

Many students either answer ‘‘one day’’ by inertia or claim

that the problem presents impossible nonsense. Only few

suppress these tendencies and attempt to reason through the

available information. What does this twist on a chicken

and an egg problem have to do with generalization? We

believe that by the end of this section the connection will

become clear. However, let us consider first a more

‘‘realistic’’ problem.

A pound of fancy grain cost $1.68, how much grain

can you buy for $0.50?

We presented this problem to various populations, from

middle school students to preservice elementary school

teachers, and there is a significant number of people who

were making errors in setting up the division statement,

that is, dividing 1.68 by 0.50 rather than 0.50 by 1.68. What

is the best way to help them? Of course, pointing to their

error is not helpful beyond the given problem.

The general multiplicative structure that a learner needs

to recognize in order to solve this problem is a pound of

fancy grain costs X, how much grain can you buy for Y?

This is an example of a more general form of quotative

(measurement) division, that is, division structure that

determines how many times can X fit into Y, or how Y can

be measured with X.

Once the structure is recognized, the solution is given by

Y 7 X. The question, however, is what is it that can guide

learners towards seeing the generality in this particular case

(Mason & Pimm, 1984)? What we found helpful is

changing the numbers.

A pound of fancy grain cost $2, how much grain can

you buy for $6?

A pound of fancy grain cost $2, how much grain can

you buy for $20?

The numbers in these examples are compatible, that is,

easily manipulated and work well together. Learners

seldom have problems with these kinds of questions, so

using them as a starting point is beneficial. Once the

general structure is established, it is possible to move to

‘‘more problematic’’ numbers, involving fractions.

A pound of fancy grain cost $2, how much grain can

you buy for $0.50?

And then gradually return to the original problem.

This strategy can be seen as a modification of the

‘‘structured variation grids’’ (Mason, 2001, 2007) in that it is

a gradual numerical variation for the purpose of prompting

recognition of structure. So, why is the structure more

readily recognized when numbers are compatible than when

they are not? We suggest that the source of the obstacle is

with the perceived range of permissible change. That is, the

numbers in the initial problem are ‘‘too far’’ from the stu-

dents’ example space of problems that are associated,

implicitly, with measurement division. Numerical variation

assists in recognizing similarities and extending the general

structure, a step necessary for the solution.

Now we return to chickens and eggs.

If six hens lay six eggs in 1 day, how long will it take

one hen to lay one egg?

This sounds close to trivial. We can keep ‘‘one chicken’’

invariant and ask further:

If six hens lay six eggs in a day and a half, how long

will it take one hen to lay one egg?

Or

If six hens lay six eggs in 6 days, how long will it

take one hen to lay one egg?

This apparent analogy to the initial problem suggests a

solution.

5.2 On ‘‘big’’ percentages

We often smile when someone claims to be putting 120%

of his energy in a project or being 200% sure of something.

These claims exemplify a tendency to overemphasize an

effort or certainty, rather than provide an accurate measure.

When a whole is 100%, what is indicated by a percentage

higher than 100? We found that when a high percentage

appears in a mathematical problem situation it often leads

the learners away from recognizing the general structure.

Consider for example the following problem:

The price of a can of coffee was $10. It increased by

400%, what is the new price?

In a class of preservice elementary school teachers, about

half of the students claimed that the new price was $40,

explaining that 400% meant ‘‘quadrupling.’’ Once again,

what we found helpful towards recognizing the general

strategy is numerical variation:

The price of a can of coffee was $10. It increased by

20%, what is the new price?

The price of a can of coffee was $10. It increased by

35%, what is the new price?
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The price of a can of coffee was $10. It increased by

100%, what is the price now?

Again, we believe that the main problem is with the

perceived range of permissible change. While 20, 35%, or

even 100% fits within what is expected—both in a real

world context and in a mathematics classroom context—

the increase of 400% appears beyond a ‘‘reasonable’’

permissible change. We now turn to another popular riddle,

and attempt to explain it with numerical variation.

5.3 On bellboy and gentlemen (or waiter and ladies)

The ‘‘missing dollar riddle’’ or ‘‘missing dollar paradox’’ is

a famous puzzle that appears in almost every published

collection of mathematical problems. The riddle begins

with the story of three men who check into a hotel. The

cost of their room, they are told, is $30. So, they each

contribute $10 and go upstairs. Later the manager realizes

that he has overcharged the men and that the actual cost

should have been only $25. The manager promptly sends

the bellboy upstairs to return the extra $5 to the men. The

bellboy, however, decides to cheat the men and pockets $2

for himself and returns $1 to each of the men. As a result,

each man has now paid $9 to stay in the room

($3 · $9 = $27) and the bellboy has pocketed $2

($27 + $2 = $29). The men initially paid $30, so the

question is where is the missing dollar?

Another version of this riddle changes the scene and the

players—three ladies go to a restaurant for a meal. They

receive a bill for $30. They each put $10 on the table,

which the waiter collects and takes to the till. The cashier

informs the waiter that the bill should only have been for

$25 and returns $5 to the waiter in $1 coins. On the way

back to the table the waiter realizes that he cannot divide

the coins equally between the ladies. As they did not know

the total of the revised bill, he decides to put $2 in his own

pocket and give each of the ladies $1. Now that each lady

has been given a dollar back, each of the ladies has paid $9.

Three times 9 is 27. The waiter has $2 in his pocket. Two

plus 27 is $29. The ladies originally handed over $30.

Where is the missing dollar?

Although the setting and the characters has changed,

what has not is the numbers—and the numbers are prob-

lematic in their compatibility. That is to say, the incorrect

calculation brings us very close ($29) to the given initial

value ($30), and that is where the problem, and the per-

ceived paradox, lies. A variety of experts on a variety of

websites and forum discussions have tried to explain the

mis-calculation. We would like to clarify it as well.

However, unlike other explanations, which stay with the

story, we alter the story by implementing a numerical

change. The paradox in the aforementioned situations is

created by adding the $2 pocketed by the waiter or the

bellboy to the $27 paid by the ladies or the men. Adding

these two amounts does not answer any question. However,

subtracting 2 from the 27 answers the question of how

much was actually received as payment by the cashier or

the receptionist at the hotel desk.

It is clear that the above explanation, or others similar to it,

do not ‘‘work’’. People are still puzzled with the difference

between the $29 that the story mentions and the desired initial

$30, and so the search for the missing dollar continues. This is

why the puzzle has survived for so many generations and, we

suspect, will continue to intrigue curious minds for many

generations to come. For those who strive to understand,

however, we offer a different story—that is actually the same

story but with different numbers. Let’s say the room cost only

$20, and the bellboy was sent to return $10 to the men. For

simplicity of division, he pocketed $1 and returned $3 to each

of the men. In this situation the men paid $7 each, for the total

of $21. The bellboy has $1. Adding the actual payment to the

one pocketed dollar gives us $22. Would it make sense to

suggest, starting with the initial collection of $30, that $8 is

missing? And if this is not convincing enough, let us change

the numbers in the story once again, giving the men a ‘‘Stay

with us for 1/3 the price’’ coupon, and send the bellboy to

return to them $20. By now, knowing the bellboy’s desire for

a simple and fair division, we have him pocket $2 and return

$18 to the men, $6 each. In this situation the men paid $4

each, for a total of $12. The bellboy has $2. Adding the actual

payment to the two pocketed dollar gives us $14. Would it

make sense to suggest, starting with the initial collection of

$30, that $16 is missing?

We noticed that varying numbers, whether large or

small, helps in making sense of the situation. Numerical

variation in the story could be more convincing than any

attempts to explain the original one. The absurdity of the

missing dollar in the original situation is brought to surface

when we establish the general structure of adding the paid

amount to the pocketed amount. If the general structure of

‘‘missing money’’ makes no sense, neither does its specific

example of the ‘‘missing dollar’’.

Numerical variation is recognized in instruction as a

viable strategy; however, it is normally implemented

starting with small or compatible numbers and then, once

the structure is established, moved towards larger or

stranger numbers. In this section we have also considered

the benefits of numerical variation in the ‘‘opposite direc-

tion’’ in order to reveal the underlying general structure.

6 Pivotal examples as counterexamples

In previous sections we suggested how attentive choices of

examples can help students to make appropriate
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generalizations. In this section we focus on the role of

examples in refuting students’ inappropriate generaliza-

tions. Zazkis and Chernoff (2006) introduced the notion of

a pivotal example, defining it as an example that creates or

resolves a cognitive conflict and makes learners change

their mind with respect to a previously held strategy or

belief. They further noted that a counterexample, while

sufficient to refute a statement from a mathematical per-

spective, does not necessarily have the power needed to

convince someone to abandon a previously made general-

ization. As such, a pivotal example is needed.

In order to introduce the concept of pivotal example, we

describe the conversation with Tina who was articulate in

her robust ideas and her struggle with disconfirming evi-

dence. Tina was a preservice elementary school teacher in

her early thirties enrolled in a course ‘‘Designs for Learn-

ing: Elementary Mathematics’’. This is a ‘‘methods’’ course

in which students examine topics from the elementary

school curriculum with the double purpose of (1) exposure

to different pedagogical approaches and (2) opportunity to

strengthen and enrich their own mathematics. In Shulman’s

terms (1986), acquiring curricular knowledge in this course

serves as a vehicle to both develop pedagogical content

knowledge and strengthen subject matter knowledge. Tina

had extensive experience working in a tutoring centre prior

to entering the teacher education program. She often shared

with her classmates her experience with young learners

using, what she referred to as, ‘‘tricks of the trade.’’

Overall, she had a positive attitude towards mathematics

and teaching mathematics and she was respected by her

classmates as a source of ideas. However, at times she

appeared limited by her own experiences and was not

sufficiently open to new ideas and strategies presented in

the course.

The topic of fractions was addressed in the course in

considerable detail, as the related concepts are known to be

problematic to both young learners and preservice ele-

mentary school teachers. One classroom session focused on

a variety of ways to compare fractions, such as ‘‘bench

mark,’’ ‘‘compliment to a whole,’’ ‘‘common numerator’’

strategy, etc. The goal in the presented comparison tasks

was to avoid the ‘‘common denominator’’ strategy that

students were already familiar with whenever possible.

Towards the end of this session Tina approached the

instructor and introduced a ‘‘different strategy.’’

Tina: There is another strategy that you didn’t mention,

that has always worked for me.

Instructor: OK, please show me.

Tina: You simply take away the top from the bottom and

see what is larger. Where the number is larger, the

fraction is smaller, like 2/7 and 3/7, 5 is greater than 4,

so this fraction (pointing to 2/7) is smaller.

Instructor: Hmm, interesting …
Tina: And the examples you showed work like that.

Instructor: Would you explain why this works?

Tina: I’m not sure how to explain this, it just makes

sense.

Rather than acknowledging the strategy that Tina intro-

duced as wrong, the instructor sought examples that

demonstrate the discrepancy. However several examples

discussed in that classroom session confirmed her strategy

and seeking explanation as to why her strategy ‘‘works’’

appeared to not be of interest to her. Tina said it just

‘‘makes sense,’’ and if something ‘‘works’’ as well as

‘‘makes sense,’’ presumably, no explanation is needed. The

excerpt with Tina demonstrates the ‘‘danger’’ of empirical

generalization based on a limited example space. In what

follows we describe the instructor’s attempt to raise Tina’s

awareness of a possible discrepancy.

Instructor: And how about different denominators?

Tina: Oh-yeah, it will work, it always did.

Instructor: So how about 1/2 and 2/4? Using your

method we would conclude that one of these fractions is

larger than another.

Tina: But they never give you fractions that are the same

to compare. So the method works when they are not the

same.

Instructor: And how about 5/6 and 6/7? We have just

shown how to think of them and compare without

finding a common denominator. How could you apply

your method in this case?

Tina: You can’t if the difference is the same. But if it is

not the same, it works [pause], I think it works, it always

worked for me, in school, I mean. Like 4/9 and 5/7. You

said, use 1/2 as a bench mark. I just looked at 5 here and

2 here [pointing at 4/9 and 5/7] and where you get 2 the

fraction is larger.

Instructor: And how about something like 9/10 and 91/

100?

Tina: [pause]. So are you saying that with ridiculously

large number of pieces this doesn’t work?

Instructor: I’m just asking questions…

We note that, having faced a counterexample, Tina’s

immediate tendency was to amend her strategy, rather than

to abandon it. In the above excerpt, presented with

disconfirming evidence of 1/2 and 2/4, Tina reduced the

scope of applicability of her method, claiming ‘‘the method

works when they [i.e., factions] are not the same’’ and that

her strategy cannot be used ‘‘if the difference is the same’’.

To support her strategy, she immediately introduced

another confirming example of 4/9 and 5/7. However,

Tina’s reaction to the example of 9/10 and 91/100 can be

seen as recognition of the fact that her method was not
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applicable for the suggested case. It also can be seen as yet

another attempt of reducing the scope of applicability.

What is implicit in her words is the belief that the strategy

‘‘works’’ with ‘‘reasonable’’ numbers and not with ‘‘ridic-

ulously large’’ ones. The disappointment in Tina’s voice at

this point was evident, but hard to convey in writing. It

may, in fact, have not been the last example which made

Tina reconsider her strategy, but rather the last example in

conjunction with all the previous examples that she tried to

dismiss. At this point the instructor turned to the class with

the request to examine the strategy presented by Tina. This

resulted in the presentation of numerous counterexamples,

some of which were generated by Tina herself. Some

examples—that included comparing 2/3 with 5/7, or 3/4

with 8/11—appeared to be more convincing than the

initially suggested 9/10 and 91/100. Likely, these examples

fall into the category of ‘‘normal’’ numbers rather than

‘‘ridiculously large’’ ones. However, rather than relative

size of numbers, how can pivotal examples be character-

ized? We suggest that pivotal examples should fit within

the learner’s example spaces (Watson & Mason, 2005).

Without such a fit a counterexample may merely be

considered as a special case or an outlier, rather than as

evidence that disconfirms a generalization.

The notion of example space has been central in our

discussion. We have shown that in order for a counterex-

ample to act to dismiss a mis-generalization, rather than be

seen as an exception, a pivotal example should fit within

the individual’s example space. In what follows we dem-

onstrate how a limited example space may lead to incorrect

generalization.

7 Potential pitfalls in choice of examples

While generalizations are made by considering examples,

there is no definite answer as to what kind of examples, and

how many examples, are necessary in order to form a

generalization. In a similar way that examples may lead to

appropriate generalizations, they may also lead to a mis-

generalizations. In this section we present two cases in

which the choice of examples led to mis-generalization.

7.1 Teacher’s examples: array of toothpicks

In this section we revisit the toothpick problem reported in

Simmt, Davis, Gordon and Towers (2003). The problem

invited students to consider a rectangular array of squares

made out of toothpicks and provide an algebraic general-

ization to determine the number of toothpicks that are

needed in constructing an n · k array. To guide students

towards an appropriate algebraic expression they were

presented with an example of a 3 · 6 array and asked to

determine the number of toothpicks in the picture (see

Fig. 1). The students were then asked to write a rule (that

does not require counting each and every toothpick) for

determining how many toothpicks there would be in a

rectangular shape of any size (length and width) made with

toothpicks, to express the rule algebraically, and to test

their rule by determining the number toothpicks in a

10 · 15 rectangular array.

The number of toothpicks required to build a rectangular

array of squares is given by L(W + 1) + W(L + 1), where L

and W stand for length and width respectively. However,

considering the given 3 · 6 array, Arlene suggested that

the number of toothpicks needed was 45, which is a result

of 32 + 62. Arlene generalized this observation, suggesting

that the number of toothpicks in the general structure

should be L2 + W2. She further applied her formula for the

10 · 15 array, achieving a correct result of 325.

Arlene’s teacher was surprised by her solution, as an

apparently incorrect generalization led to a correct result.

The teacher’s curiosity led to an examination of cases in

which L(W + 1) + W(L + 1) equals L2 + W2, as the

equality does not hold in a general case. Simmt et al.

(2003) presented the work of this teacher’s specializing and

generalizing which, in the end, led to the conclusion that

the equality holds if L and W are consecutive triangular

numbers1.

The choice of numbers on the assignment was coinci-

dental and in this particular case uncovered interesting

mathematics. However, many coincidental choices may

lead to inappropriate generalizations. Coincidental choices

cannot be avoided. However, a teacher’s awareness of how

examples influence generalization is essential. Arlene’s

aforementioned generalization is an example of what He-

witt (1992) described as ‘‘train spotting’’ in that the

generalization is based on fitting numbers rather than on

some logical derivation considering where the numbers are

coming from. Rather than just looking at a pattern of

Fig. 1 Toothpicks in a rectangular array of squares

1 Triangular numbers (1, 3, 6, 10, 15, 21…) are numbers of the form

n(n+1)/2, that are sums of consecutive natural numbers starting with

1; the name comes from considering the number of ‘‘dots’’ needed to

draw a triangle.
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numbers, and testing the suggested rule with a single

example, it might be beneficial to guide students to connect

their method of counting to a numerical rule as well as to

check their suggested generalization choosing what Mason,

Burton and Stacey (1985) refer to as ‘‘judicious examples’’.

7.2 Students’ examples: counting squares

Edwards and Zazkis (2002) investigated students’ work on

the task of counting the number of squares crossed by a

diagonal in a rectangular grid presented in Fig. 2.

The most general, single rule solution is given by d =

n + k-GCD(n,k) (where d is the number of squares crossed

by the diagonal of an n · k rectangle, and GCD is the

greatest common divisor).

Examining the problem solving journals of preservice

elementary school teachers, Edwards and Zazkis (2002)

found that a popular solution was to claim that d = n + k –

1. In fact, even students who arrived at a complete and

correct solution used this conjecture at some point in their

investigation. For example, given a rectangle five squares

wide and four squares tall, the diagonal would cross

5 + 4 – 1 = 8 squares. As is clear from the general solu-

tion, this conjecture is true only when n and k are relatively

prime. If the examples that students generated in search of

a conjecture happened to have dimensions that are rela-

tively prime, then this conjecture would appear to be

supported.

Trying additional examples, the following solution was

another popular generalization among the students: If n and

k are both even, then d = n + k – 2; alternatively (that is, if

both odd or one odd and one even) d = n + k – 1. Yet

again, this emphasizes the choice of examples and the

dangers in attending to limited example spaces when

making generalization.

Another issue of attention is the fact that even students

who arrived at a correct and complete general solution

were not satisfied. Their intention was to find a ‘‘formula’’

that depends only on n and k. The interference of gcd(n,k)

in their solution appeared inconsistent with their concept

image of a ‘‘general solution.’’

While we accept that some pitfalls in generalization are

unavoidable, we believe that appropriate instructional

attention could guide learners towards purposeful choices in

numerical variation. Such choices will assist in generalizing

based on recognition of structure rather than on ‘‘train

spotting.’’ This approach will help students progress from

empirical to theoretical generalization (Dörfler, 1991) or

from factual to contextual generalization (Radford, 2003).

8 Conclusion

‘‘The reason for specializing is to permit and to promote

generalizing’’ (Mason, 1999, p. 22). We agree with this

general suggestion, but do so with caution. Specializing

involves consideration of particular cases, in other words,

consideration of examples. The caution is needed because

not every set of examples will lead to a successful gener-

alization. Particular features of examples are more helpful

than others as a means towards recognizing and attending

to the general structure. In this article we attempted to

reveal a few of these features.

We discussed the connection between examples and

generalization along several different avenues: the choice

of examples that promote successful generalization and the

choice of examples that help in refuting incorrect gener-

alizations. We also attended to the potential pitfalls in

considering a limited example space, either by ‘‘random’’

choices or by convenient choice of small numbers.

Our overall conclusion is that generalization is sup-

ported by enriching or explicating an individual’s example

space. Numerical variation serves as the means towards

this end. Big numbers may bridge the gap between con-

crete small numbers and abstract algebraic symbolism. We

demonstrated this in the conversation with Julie and her

attempts to describe a pattern in standard algebraic nota-

tion. On the other hand, small or compatible numbers may

help in revealing structure that is concealed when consid-

ering bigger numbers. We illustrated this in the cases of

division by fraction and percentage increases that are over

100%. Further, simply a different choice of numbers may

help in resolving strange coincidences and misleading

arguments. We discussed this considering the hen and the

egg riddle, the missing dollar paradox, the toothpick array,

and the diagonal line problem.

Diagonals in a Rectangle 

  On squared paper draw a rectangle and draw in a diagonal. 

   How many grid squares are crossed by the diagonal? 

In case of a 3x5 rectangle or a 2x2 rectangle above, we can simply count. 

However, can we make a decision about a 100×167 or a 3600×288 rectangle? 

In general, given n×k rectangle, how many grid squares are crossed by its 

diagonal?

Fig. 2 Diagonal in a rectangular array
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Consistent with ‘‘the discipline of noticing’’, ‘‘the

purpose of the report is not to prove or persuade, but to

suggest potential, to provide access for the reader to

notice similar situations in their own practice and to

demonstrate the range of work undertaken in order to

reach the proposals being made’’ (Mason, 2002, p. 195).

Having illustrated the importance of examples in forming

and refuting generalization, we propose that it is the

teacher’s role, not only to seek appropriate examples, but

also to develop specializing strategies among learners. As

such, our article contributes several examples for potential

instructional implementation.
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