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ABSTRACT 
We propose and study a new input modality, WristWhirl, 
that uses the wrist as an always-available joystick to perform 
one-handed continuous input on smartwatches. We explore 
the influence of the wrist’s bio-mechanical properties for 
performing gestures to interact with a smartwatch, both 
while standing still and walking. Through a user study, we 
examine the impact of performing 8 distinct gestures (4 
directional marks, and 4 free-form shapes) on the stability of 
the watch surface. Participants were able to perform 
directional marks using the wrist as a joystick at an average 
rate of half a second and free-form shapes at an average rate 
of approximately 1.5secs. The free-form shapes could be 
recognized by a $1 gesture recognizer with an accuracy of 
93.8% and by three human inspectors with an accuracy of 
85%. From these results, we designed and implemented a 
proof-of-concept device by augmenting the watchband using 
an array of proximity sensors, which can be used to draw 
gestures with high quality. Finally, we demonstrate a number 
of scenarios that benefit from one-handed continuous input 
on smartwatches using WristWhirl. 
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INTRODUCTION 
Interacting with a smartwatch often necessitates both hands, 
especially for continuous input such as flicking the device 
screen with the opposite-side hand (OSH) [34]. This 
becomes tedious as such wearable devices are predominantly 
valuable for glancing at information when the users’ hands 
are occupied while holding objects or busy at other tasks.  

Efforts are underway at developing methods to allow same-
side hand (SSH) operation on smartwatches. However, these 

have primarily targeted discrete input operations, such as in 
the case of micro-interactions [21, 33] or for assigning 
commands to finger postures [10, 24, 36]. Tilting the wrist is 
a viable approach [9], but comes at the cost of quickly losing 
visual contact with the display as tilt movements can exceed 
the acceptable screen viewing ranges [9, 23]. Performing 
more expressive continuous gestural input still remains 
challenging using the same-side hand.  

We study and present an alternative approach, WristWhirl, 
an interaction technique that uses continuous wrist 
movements, or whirls, for one-handed operation on 
smartwatches (Figure 1). When observing the collective 
range-of-motions of the wrist along each of its axes of 
movement [12] (see Figure 2 and the WRIST AS JOYSTICK 
section), the hand can be viewed as a natural joystick. We 
explore the ability of the human wrist to perform complex 
gestures using full wrist motions, or wrist whirls. We first 
demonstrate that wrist whirl is sufficiently expressive to 
capture common touch interactions as well as generate free-
form shapes (Figure 1 right) without impacting screen 
viewing stability. To validate the use of WristWhirl in 
different application scenarios, we implemented a proof-of-
concept wristband sensor (Figure 1 left) by augmenting the 
strap of a smartwatch using an array of infrared proximity 
sensors, facing the user’s palm. The sensors detect the wrist’s 
joystick-like motion by sensing the degree of 
flexion/extension and ulnar/radial deviation of the wrist 
motion. Our preliminary system evaluation showed that the 
user could use the prototype to draw gestures at a quality 
comparable to that achieved by a commercial motion 
tracking system (e.g. Vicon [3]). Our approach does not seek 
to replace two-handed use of smartwatches, but instead 
provides an alternative to same-sided smartwatch input. 

 

Figure 1. Left: Wrist whirling using our prototype. Right: 
example gestures drawn using the prototype [top: horizontal, 
vertical, slash, backslash, equivalent to flicking the 
touchscreen; bottom: circle, question mark, triangle, rectangle] 
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Our contributions from this work include: (1) the notion and 
investigation of using wrist whirls for one-handed 
continuous input on smartwatches; (2) the implementation 
and evaluation of a proof-of-concept prototype for detecting 
wrist whirl gestures; and (3) a set of usage scenarios to 
demonstrate WristWhirl’s unique capabilities.   

LITERATURE REVIEW 
In this section, we present the existing literature in enabling 
one-handed interaction on smartwatches using discrete and 
continuous gestures. Given this scope, we exclude prior 
research on interactions without involving hand input (e.g. 
voice input). We also discuss various sensing techniques that 
have been developed in this context.  

One-handed Discrete Gestures on Smartwatches 
For the most part, research on one-handed input for 
smartwatches has focused on trigger discrete commands. 
Among this class includes techniques such as pinch (e.g. 
thumb touching the other fingers) [1, 4, 10, 13, 21, 26, 36] 
and different hand postures (e.g. fist or thumb-up) [10, 11, 
24, 36]. A variety of sensing techniques have been developed 
to detect these gestures, many of which can be well 
integrated into a smartwatch form factor. Perhaps the earliest 
work in this category is GestureWrist [24], a technique that 
uses an array of capacitive sensors to detect the changes in 
forearm shape to inform different hand postures. Fukui, et al. 
[11] and Ortega-Avila et al. [22] demonstrated that forearm 
shape can also be sensed by using an array of infrared photo 
reflectors placed inside the wristband. More recently, 
WristFlex [10] and Tomo [36] showed that sensing 
capability can be improved by using force resisters or 
electrical impedance tomography (EIT) sensors.  

Acoustic sensors have also been effective in detecting pinch 
gestures. For example, Skinput [13] uses an array of contact 
microphones (e.g. piezo sensors) worn on the upper arm to 
detect sound waves generated by the fingers tapping each 
other. Amento et al. [4] showed that a single piezo sensor 
placed in a wristband can help detect finger taps or rubs, 
similar to the gestures that can be detected by the commercial 
product, Aria [1]. Other approaches include using EMG 
sensors [2, 17, 26] and cameras [7, 21], which all require the 
sensor to be either worn on the upper arm or on other body 
parts, thus being less practical to smartwatch users.  

An important aspect of using minimalist gestures, such as 
pinch or a simple hand posture to interact smartwatches is 
the ability to maintain a stable screen during the gesture to 
ensure constant visual contact with the display. Although, 
techniques like Android’s wrist gesture or even shaking the 
watch may also be used to trigger commands, they are 
limited to eyes-free scenarios, where visual contact with the 
screen is non-essential. Any input technique for 
smartwatches needs to maintain screen stability for 
continuous feedback and interaction.  

One-handed Continuous Gestures on Smartwatches 
In contrast to the discrete gestural input, little work has 
produced techniques for one-handed continuous gestural 
input on smartwatches. While existing methods were 
originally developed for a different set of applications that 
may be used in this context, there are limitations which may 
prevent them from being used effectively by smartwatch 
users. For example, Crossan, et al. [9]’s work uses the 
smartwatch as a motion sensing device to track the degree of 
wrist pronation to control the movement of a cursor in 1D on 
a handheld device. To detect the same pronation gesture, 
Strohmeier, et al. [27] proposed to attach a pair of stretch 
sensors to the skin of the forearm, which can also be used to 
detect the bend motion of the wrist for 1D gestural input. 
Rahman et al. [23] systematically studied the number of 
distinguishable levels in each of the wrist tilt axes. In 
principle, the same concept can be applied to control a 2D 
cursor to allow the users to draw common touchscreen 
gestures by tilting the watch screen in the x and y axes. This 
is a technique that has been developed in the past for 
handheld devices [8, 14, 23, 30]. Note that tilting the body of 
the smartwatch may lead to loss of visual contact with the 
screen as it moves away from the user’s view. This makes 
such an approach unusable for tasks requiring visual 
attention [23]. Similarly, translating the watch like a 
peephole display [16, 35] may also be used to control the 
cursor but the same problem remains unsolved. Additionally, 
moving the watch may largely impact task completion time 
[16]. We designed our technique to particularly overcome 
this limitation and allow the screen of the smartwatch to 
remain relatively stable when the gesture is being drawn. 

Micro-gestures [21, 33] may be used for one-handed input as 
well. Resent research has shown the possibility of using a 
wrist-mounted camera [18, 29] to capture the movement of 
the thumb on the other fingers, which in principle can be used 
for drawing gestures. However, using a camera may 
significantly impact the form factor of the smartwatch and 
may drain the battery quickly. On the other hand, Soli [20] 
requires the sensor’s active region to face the fingertips, thus 
not suitable for one-handed interaction in a smartwatch.   

The most relevant work to our research is that of Voyles et 
al. [28], who proposed to use the wrist as a joystick for 
steering a robot. The authors developed a data glove 
equipped with magneto-resistive sensors to detect the 
joystick motion of the wrist movement. While wearing a data 
glove may be acceptable for domain specific applications 
(e.g. controlling the movement of a robot), it can be 
inconvenient and inappropriate for smartwatch users and 
general consumers. In contrast, the sensor we developed can 
be integrated into the watchband thus having much less 
impact on the smartwatch form-factor. Finally, there is a lack 
of understanding of the usability of the wrist’s joystick 
motion for input on smartwatches and in different mobile 
environments (including mobility or distractions). Table 1 
summarizes the existing work in the design space of one-
handed input on smartwatch using wrist-worn sensors. 



 

 

 Discrete Gesture Continuous Gesture 

Screen 
Unstable 

Shake the watch 
Android Wrist Gesture 

Pronation (1 DOF) [9, 27] 
Peephole (2DOF) [16, 35] 
Tilt the screen (2DOF) [8, 
14, 23, 30] 

Screen 
Stable 

Finger pinch [1, 4, 10, 
13, 21, 26, 36] 
Hand posture [10, 11, 
22, 24, 36]  

 
 

WristWhirl (2DOF) 
 

Table 1 Existing work and design space of one-handed 
interaction on smartwatches. 

WRIST AS JOYSTICK 
The wrist is one of the most flexible joints in the human 
body. It can rotate along the forearm in both directions (e.g. 
pronation and supination). It can also bend along the plane 
of the palm (e.g. flexion and extension) or the one that is 
perpendicular (e.g. ulnar and radial deviations) to the palm 
(Figure 2). Previous studies suggests that the maximum 
range-of-motion for each moving axes are approximately 60° 
and 45° for flexion and extension respectively, 15° and 30° 
for ulnar and radial deviations respectively, and 65° and 60° 
for pronation and supination respectively [12]. These fairly 
wide ranges-of-motions could be used to turn the wrist into 
a “joystick” for smartwatches input using the same-side hand 

The joystick motion available while whirling the wrist can 
be mapped to continuous events on a smartwatch, such as 
drawing uni-stroke gestures such as flicks or different 
shapes. Since the maximum range-of-motion of the wrist is 
highly asymmetric due to the constraints imposed by the 
structure of the tendons, muscles, and bones of the forearm, 
the ability to draw multiple gestures with varying levels of 
complexities needs careful examination.  

 

Figure 2. Whirling the wrist consists mainly of ulnar/radial 
deviations (top) and extension/flexion (bottom). 

DESIGN CONSIDERATIONS 
We present several factors that need to be considered for 
designing continuous one-handed input for smartwatches 
and which guided our exploration.  

Screen Stability 
Smartwatches already suffer from a limited display real-
estate. Using the wrist as a joystick could mean rendering the 
screen quickly out-of-view for a given action. While it is 
impossible to completely eliminate screen movement when 

a gesture is drawn, our goal is to ensure this new input 
modality can minimize screen oscillations in comparison to 
methods that rely on tilting the watch for input. While other 
feedback modalities are possible, such as watch vibrations, 
when the gesture is accurately detected, we consider it 
important to have the screen in a reasonable viewing range 
to provide the same degree of fidelity as in touch interactions.   

Eyes-free Input 
Although screen viewing range is a key design consideration, 
many instances of smartwatch use could also benefit from 
eyes-free interaction. This could be in meetings, or during 
intense user activity, like a workout. Eyes-free input could 
also be driven by policies so as to minimize screen contact 
while driving or activities requiring the user’s full attention. 
Therefore, intuitive mappings of wrist gestures to actions are 
needed to reduce user’s dependence on full visual contact. 

Control and Display Mapping 
When an on-going gesture needs to be visualized on the 
watch display, the control and display mapping can be 
provided using either position- or rate-controlled mode. With 
position-control, the physical range of the wrist is mapped to 
actions on the screen, and the direction and amount of the 
wrist bend has a one-to-one mapping to the position of the 
on-screen visual cue (e.g. the trace of a gesture).  Position 
control reinforces feedback via proprioception of the hand’s 
orientation, allowing users to develop muscle memory for 
eyes-free interaction. In contrast, with rate-control, a cursor 
is needed and moves at a speed proportional to the direction 
and bend of the wrist. The cursor’s rate of movement 
increases with the degree of wrist bend, i.e. more the hand is 
bent from its neutral pose, the faster the cursor moves. Rate-
control mode is used in [28] but its control mechanism varies 
considerably from direct input on touchscreen devices. To 
minimize cognitive overhead in switching from direct touch 
to wrist gesture, we only explore position-control mode. 

Gesture Delimiter 
Explicit wrist gestures to trigger a smartwatch interaction 
need to be differentiated from normal wrist movements. 
Dwell can be used, but it can be less efficient. Another 
approach includes using only distinguishable movements 
that do not occur in normal day-to-day hand movements. 
While this method does not require a gesture delimiter, the 
number of usable wrist gestures is limited. Alternatively, a 
dedicated gesture can explicitly start and/or the end of a 
gesture. The delimiter can be a continuous gesture (e.g. a 
directional mark) or a discrete one (e.g. a finger pinch) but it 
needs to be reliable and easy to perform [25]. The latter 
approach requires an extra sensor for pinch detection but has 
the potential benefit of saving power (described later). In our 
implementation, we implemented the pinch delimiter using a 
simple sensing mechanism. 

EXPLORING THE WRIST AS A JOYSTICK CONTROLLER 
We conducted a study to investigate the bio-mechanical 
ability of the wrist to effectuate joystick-like gestures. We 
deem it an important first step to validate the feasibility of 



 

 

this new input method. We were particularly interested in 
measuring the efficiency and precision of such an input 
system as well as the amount of screen deviation caused by 
whirling the wrist.  

Participants 
Fifteen participants (2 females) between the ages of 20 and 
30, all right-handed and daily computer users volunteered.  

Gesture Set 
To understand the ability to gesture using full wrist motion, 
we grouped gestures into two types [6]: 1) marking gestures; 
and, 2) free-form shape gestures. Marking gestures are 
directional strokes, are analogous to flicking a touchscreen, 
and are common for navigating large workspaces (e.g. a map 
or long list). Free-form shape gestures involve more complex 
shapes and can be rotationally invariant. For the directional 
marks, we included the horizontal and vertical strokes as well 
as two 45° strokes towards left and right (Figure 3 left). For 
the free-form path gestures, we chose four gestures from the 
gesture set shown to be useful on touchscreen devices [31, 
32] (Figure 3 right). To ensure diversity, we picked the free- 
form gestures with straight lines and corners of different 
degrees (e.g. triangle and rectangle), one with a curvature 
path (e.g. circle) and one that is a mix of a curve, straight line, 
and corner (e.g. question mark).  

  

Figure 3. The eight tested unistroke gestures. The black dot 
indicates the start of the gesture. 

Task and Procedure 
In each trial, a gesture was shown to participants, who were 
then asked to reproduce the gesture as accurately and as fast 
as possible using their left wrist. A computer mouse was used 
on the right hand to indicate the start and end of a gesture just 
so that our study was not confounded by the implementation 
of the gesture delimiter (the delimiter we implemented in our 
prototype is described below, in the WRISTWHIRL 
PROTOTYPE section). Participants pressed and held the left 
mouse button to start drawing. Releasing the mouse button 
indicated the end of the gesture.  

Participants were asked to perform the gestures in two 
different postures, hand-up and hand-down (Figure 4). In the 
hand-up condition, participants held the watch in front of 
their chest and with the hand-down condition, participants 
were required to have the watch hand hang naturally 
alongside the body. The former condition allows us to 
examine by how much the watch screen is titled during a 
whirl action, while the latter enables us to examine eyes-free 
input. When the watch was held in front of the chest, 
participants saw the gesture trace they were drawing on the 
watch screen. When the watch hand was hung alongside the 
body, no visual feedback was given, the gestures were drawn 
eyes-free. A computer monitor was placed in front of 
participants to show them the current gesture they needed to 
draw. The monitor turned blank after a trial started.  

Finally, participants were also asked to perform the gestures 
while standing and walking. Similar to [6], in the Walking 
condition participants had to coordinate hand gestures while 
moving on a motorized treadmill at a speed of 3km per hour. 

At the start of the experiment, participants were asked to 
practice gesturing using the wrist for as long as they wanted. 
Before each trial, one of the eight gestures was shown to the 
participant on both the watch and a monitor. On a left mouse 
button click, the watch display turned into an empty canvas 
with a black cursor on it. Participants were then instructed to 
hold down the mouse button and start drawing the gesture. 
Upon finishing the gesture (e.g. the mouse button was 
released), a new gesture was presented to the user. This 
process was repeated until all trials were completed at which 
point participants were asked to fill-in a questionnaire. 

 

Figure 4. Hand postures: hand-up (left) and hand-down (right). 

Apparatus 
Wrist motion was captured using a Vicon motion tracking 
system (Figure 4) to ensure that results of the study are 
minimally affected by hardware implementation. The wrist 
gesture was transferred into the cursor movement on a 2D 
plane by projecting the position of the marker placed on the 
back of the hand onto the 2D plane perpendicular to the 
forearm. The trace of the cursor movement was shown on the 
watch screen as long at the mouse button was held. The 
mouse was mounted on the handle on the right side of the 
treadmill to make it easy for participants to reach. Finally, 
our custom-made smartwatch consisted of a 2” TFT display, 
used as an external monitor of a ThinkPad x1 Carbon laptop 
(Intel Core I7 2.1 GHz, 8 GB RAM) running the experiment 
software, which was written in C# .NET. 

Study Design 
The experiment employed a 2×2×2 within subject factorial 
design. In each trial, participants performed tasks in one of 
each Gesture Type (mark or path) × Mobility (standing or 
walking) × Hand Posture (hand-up or hand-down) 
combination. Each condition was repeated 10 times. For the 
conditions involving bidirectional marks, participants were 
asked to draw the mark in either direction (e.g. left to right 
or right to left in the horizontal condition) for half of the 
repetition. The conditions were counter-balanced among 
participants and the order of the gestures was randomized. 
The experiment design can be summarized as: 2 Gesture 
Types × 4 gestures per type × 2 Mobility × 2 Hand Postures 
× 10 Repetitions × 12 Participants = 3840 gestures.  



 

 

Results and Discussion 
We analyzed the data using a repeated-measures ANOVA 
and Bonferroni corrections for pair-wise comparisons. 

Task Completion Time 
Time was recorded when the mouse button was pressed and 
until the button was released. ANOVA yielded a significant 
effect of Gesture Type (F1,11 = 276.37, p < 0.001) and Hand 
Posture (F1,11 = 6.9, p < 0.05). There was no significant effect 
of Mobility (F1,11 = 2.36, p = 0.153). We found a significant 
interaction effect on Gesture Type × Hand Posture (F1,11 = 
9.43, p < 0.05), indicating that a hand posture affected time 
differently for marks and free-form paths. 

Overall, participants spent on average 960 ms per gesture. As 
expected directional marks required less time (483 ms, SE = 
31) to draw than free-form paths (1436 ms, SE = 67) (Figure 
5). An interesting finding is that task completion time was 
not affected by walking or standing but participants could 
perform wrist gestures faster with the hand alongside the leg 
(877 ms, SE = 41) than with the hand held in front of the 
chest (1043 ms, SE = 64). Our observation suggested that 
participants tended to slow down a bit to ensure that they 
could draw the gestures more precisely when they saw the 
visual feedback. This is particularly true for free-form paths.  

 
Figure 5. Task time shown by Gesture Type and Hand Posture. 
Task time completed using Vicon (left) and our prototype 
(right) (Error Bars show 95% CI in all figures). 
Screen Deviation and Stability 
Wrist gestures can lead to loss of visual contact with the 
smartwatch screen or cause a blurred view of the screen 
content. To assess the degree of screen movement and sway 
we captured two metrics: screen translation and screen 
oscillation. The average translation distance T (Equation 1) 
simply measures the amount of screen movement in 3D 
space during the course of a gesture. It is defined as the sum 
of the distances from the current screen position (pi) and the 
screen position at the start of a gesture (p0) over the course 
of the gesture, divided by the length of the gesture (n points). 
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The average screen oscillation O (Equation 2) measures how 
much the path of screen changes direction over the course of 
a gesture. Considering the path of the screen as a series of 
between-point vectors, O is defined as the sum of the angle 
between the two adjacent vectors (vi and vi+1) over the course 
of the gesture, divided by the length of the path in n-1 
vectors. If the screen keeps shaking (e.g. moving back and 

forth), it will continually change direction (e.g. 180°), which 
will lead to a very high O value. 
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Screen translation distance. ANOVA yielded a significant 
effect of Gesture Type (F1,11 = 29.7, p < 0.001) and Mobility 
(F1,11 = 174.15, p < 0.001). There was no significant effect of 
Hand Position (F1,11 = 1.19, p = 0.3). We found a significant 
interaction effect on Gesture Type × Mobility (F1,11 = 31.86, 
p < 0.001), which indicates that Mobility had more of a 
negative impact on translation distance for the free-form 
paths than directional marks. Overall, the average screen 
translation distance was 17 mm per gesture. The screen 
moved less with the directional marks (14 mm, SE = 1.5) 
than free-form paths (20 mm, SE = 1.3). It is worth noticing 
that most screen movements occurred while walking (24 
mm, SE = 1.7) than standing (9 mm, SE = 1).  

Since the major impact of screen translation occurs when the 
visual feedback is provided, we further investigate the effect 
of dependent variables when the hand was held in front of 
the chest. ANOVA revealed a similar trend as the one above. 
Overall, when the screen was held in front of the user, 
average translation distance was 16 mm. In particular, 
directional marks caused less translation (13 mm, SE = 1.5) 
than free-form paths (19 mm, SE = 1.2). There was also less 
translation in the standing condition (9 mm, SE = 1) than in 
the walking condition (23 mm, SE = 1.7) (Figure 6 left). Note 
that 23 mm deviation in the position of the watch still allows 
the screen to stay inside the user’s view. However, if the 
screen shakes considerably, visual information becomes 
blurry. We thus looked into the stability of the screen using 
the screen oscillation metric. 

Screen oscillation. We only analyzed the data when the hand 
was held in front of the chest. ANOVA yielded a marginal 
effect of Gesture Type (F1,11 = 4.86, p = 0.05) and significant 
effect of Mobility (F1,11 = 8.18, p < 0.05).  

Overall, we found the screen oscillation to be 18°. This is the 
average change in the screen movement direction, which 
shows no back-and-forth movement of the watch screen 
caused by the wrist motion. In particular, the oscillation was 
slightly higher for the direction marks (18.7°, SE = 1.1) than 
for the free-form paths (17.4°, SE = 0.8). We also found less 
oscillation in the standing condition (14.7°, SE = 1.8) than in 
the walking condition (21.3°, SE = 1.1) (Figure 6 right).  

 
Figure 6. Mean translation distance and screen oscillation 
shown by Gesture Type and Mobility (Hand Position = Up) 



 

 

Accuracy Analysis 
We analyzed the gesture recognition accuracy for free-form 
paths and directional marks separately. For the free-form 
paths we were interested in the overall the shape of the 
gestures but for the directional marks we were also interested 
in the accuracy of their drawn direction as it is very common 
in smartwatch interaction (e.g. swipe). 

Free-form path recognition accuracy. We used the $1 
gesture recognizer [31] to measure the accuracy of the free-
form paths drawn using WristWhirl. The result of a 12 fold 
cross-validation revealed that on average the $1 gesture 
recognizer was able to correctly recognize 93.8% of the 
gestures. Recognition accuracy was higher when the data 
was collected in the standing condition (95.1%) than in the 
walking condition (92.4%) (p < 0.05). There was no 
significant difference between the two hand postures (p = 
0.87). Surprisingly, Question mark received the highest 
accuracy (100%), which was significantly higher than Circle 
(90.2%), Rectangle (90.8%), and Triangle (94%) (all p < 
0.001). One reason might be that the Question mark gesture 
is not carried out at the limits of the wrist range-of-motion. 

Effect of individual differences. To further investigate the 
consistency of the gestures drawn across all participants, we 
processed each participant’s data through the gesture 
recognizer trained with the remaining participants’ data. The 
result showed an average accuracy of 92.2%. This value is 
similar to that obtained above (only slightly lower than the 
overall accuracy of 93.8%), suggesting that the tested 
gestures could be drawn correctly using the wrist as a 
joystick. To further confirm how well the gestures are drawn, 
we manually inspect their visual appearances.   

Gesture visual quality. The gesture recognizer can only 
distinguish different gestures without knowing if they are 
drawn consistently right or wrong. Therefore, we recruited 
three paid volunteers to visually inspect the 1920 free-form 
paths that were collected from the study. The inspectors were 
unaware of the purpose of the study and were asked to 
identify the shape of the gestures in isolation of each other. 
For each gesture, the inspectors had to choose one that best 
matched the shape of the presented gesture from a list of 
eight figures, among which four of them were distractors 
with similar shapes. For example, “7” was chosen to confuse 
with the “Question mark”, “diamond” was chosen to confuse 
with the “Rectangle”, “b” and “Pigtail” were chosen to 
confuse with the “Triangle” and “Circle”. Adding these 
distractors allowed us to further ensure the quality of the 
correctly identified gestures. 

The result showed that the inspectors were able to correctly 
identify 85% of the gestures. Notice that 74% of the errors 
occurred when the distractors were chosen instead of the 
desired gesture. For example, the “Pigtail” was chosen 
instead of the “Circle” when the two ends of the path crossed 
each other. Figure 7 shows an example of the common 
missed interpretation of the free-form gestures.  

 

Figure 7. Examples of miss interpreted gestures by the 
inspectors (left). Se in relation to two horiztontal marks (right). 
The red dotted line is the fitted model.  

Accuracy of directional marks. We evaluated the accuracy 
of directional marks based on how straight the marks were 
drawn as well as how close the marks were to the desired 
direction (e.g. horizontal, vertical, 45° slash and backslash). 
For each directional mark, we used a linear regression to 
generate a straight line to fit the points of the gesture. We 
then used the standard error (Se) of the regression (Equation 
3) to describe how well the model has fitted the data. The 
smaller the value of Se, the better the fit. For example, Se 

equals zero when the mark is a straight line. Finally, we 
calculated the absolute value of the angle between the 
generated model and the ideal mark to measure angular error.  
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Overall, the result revealed an average standard regression 
error of 5.4 and an average angular error of ±9.4°. Pair-wise 
comparisons showed that participants could draw the vertical 
mark more straight (Se = 2.9) than the horizontal mark (Se = 
4.6), both of which were more straight than the slash (Se = 
6.8) and backslash mark (Se = 7.35) (all p < 0.05 except for 
the slash and backslash). While hand position did not have a 
significant effect on Se (p = 0.53), participants were able to 
draw directional marks more straight when standing (Se = 
4.9) than walking (Se = 5.9) (p < 0.05). Figure 7 (right) gives 
a brief idea about the relationship between Se and the 
“straightness” of two horizontal marks.  

With respect to the angular error, vertical marks had the least 
angular error (±6.14°) (p < 0.05), followed by the horizontal 
(±9.6°), backslash (±9.8°) and slash (±11.9°) marks. No 
significant difference was found among them (all p > 0.05). 
We also found no significant difference between the two 
mobility conditions (p = 0.14) and hand postures (p = 0.12). 
Overall, this result highlights the ability of participants to 
draw straight lines with good accuracy in most direction by 
using the wrist as a joystick.  

Subjective Ratings 
To assess the physical exertion of using WristWhirl to 
perform gestures, participants were asked to rate each 
gesture on the Borg CR10 Scale [5]. Overall, the directional 
marks were rated easy to perform (avg. = 2.1) whereas the 
free-form paths were rated moderately (avg. = 3.6) (Figure 
8). Swiping vertically was considered very easy as all the 
participants rated it lower than 2. Rectangle was considered 
somewhat difficult where more than 58% of our participants 
gave it a higher grade than 5 (e.g. hard). Figure 8 shows the 
ratings for all the eight gestures. We also asked participants 
to rate the acceptance of WristWhirl in different settings. The 



 

 

result showed that participants considered it socially 
acceptable to use wrist gestures in front of people (3, with 1 
being strongly acceptable and 10 being strongly 
unacceptable) although they felt more comfortable to use 
wrist gestures in private (avg.=1.4). 

 

Figure 8. Perceived exertion rating of the tested wrist gestures. 

Overall, the promising results show that common 
touchscreen gestures can be drawn using the wrist’s joystick 
motion for occasional use. We also demonstrated that 
drawing gestures did not lead to significant screen deviation 
in its position. Nor did we find that the screen shook 
significantly during the course of a gesture. An interesting 
observation is that muscle memory was commonly used by 
participants in guiding their wrist trajectories. Participants 
commented that while visual feedback was definitely helpful 
in the training phase to help them develop correct muscle 
memory, it becomes less important when they know how to 
draw with wrist. This might explain why hand posture did 
not affect the quality of the gestures as much as we expected.  

DEVICE IMPLEMENTATION OPTIONS 
Results from the first study led to exploring sensor 
alternatives for realizing the range of potential wrist whirl 
motions. We aimed at developing a self-contained, 
smartwatch form-factor prototype. In this section, we present 
the device’s implementation options in terms of different 
sensor options, sensing resolution, and options for sensing 
delimiter. We also discuss the advantages and disadvantages 
of the various hardware alternatives.  

Sensor Options 
Several options exist for choosing an appropriate sensing 
mechanism to enable our input mechanism. For example, an 
array of proximity sensors (either infrared or ultrasonic 
proximity sensor) placed on the watch strap can be used to 
detect the flexion, deviation, and extension of the wrist by 
measuring how close the bent hand is to the watch. 
Alternatively, strain gauges can also detect how much the 
wrist is bent. However, strain gauges require physical contact 
with the base of the hand to sense the bend motion, thus 
requires the watch to be placed close to the palm. This could 
lead to discomfort. Additionally, sensing accuracy depends 
on the proximity of the strain gauge to the base of the hand. 
As a watch’s position always shift during use, this approach 
is prone to errors. Cameras might also be used to detect wrist 
motion. Similar to proximity sensors, the placement of 
cameras along the forearm is not constrained to how close 
the sensor is placed to the base of the hand. However, 
running multiple cameras and processing video streams may 

consume significantly more power than the above options. 
After considering the pros and cons of the above options, we 
decided to use the proximity sensor.  

Sensing Resolution  
Fine-grained sensing resolution is preferred but it would be 
difficult to achieve the level of resolution of a Vicon motion 
tracking system. With the existing sensor options, each 
single proximity or strain gauge sensor can serve as a sensing 
pixel. Thus, the sensing resolution of the final unit is also 
dependent on the physical size of the sensor: the smaller the 
sensor, the more can be installed on the strap, to provide a 
higher resolution. In reality a compromise is necessary to 
achieve a balance between the sensing resolution, the 
smartwatch physical form factor, and power consumption. 

Gesture Delimiter 
We decided to use a dedicated delimiter sensor to detect the 
start and end of a gesture (e.g. finger pinch). Using a decided 
delimiter sensor can lead to significant power conservation 
as it allows the wrist motion sensors to be only turned on 
when a pinch is detected. The motion sensors can be turned 
off upon the end of a gesture. The pinch sensor needs to be 
self-contained in the smartwatch form factor thus requiring a 
small size. Few options exist for such a sensor. For example, 
the smartwatch’s built-in IMU sensor may be used to detect 
the pinch gesture but it may be power consuming and prone 
to motion noise. A skin-contact piezo is equally an option. 
The piezo sensor detects the sound of the finger pinch 
propagating through the user’s skin [4], which has been 
shown effective in detecting pinch in an arm band form 
factor [13]. Piezo is also extremely efficient on battery life. 
We thus decided to use a piezo.  

 

Figure 9. The WristWhirl prototype. 

WRISTWHIRL PROTOTYPE 
To explore one-handed interactions enabled by wrist whirl 
gestures we created a proof-of-concept system, WristWhirl. 
The prototype is made of a 2” TFT display and a plastic 
watch strap augmented with 12 infrared proximity sensors, 
each composed of a pair of IR emitters and detectors (LITON 
LTE-301 & 302), placed on the strap in approximately 0.4 
cms apart from each other (Figure 9). The proximity sensor 
operates at 940nm, thus differentiating its signal from visible 
light. It has a maximum sensing distance of approximately 
12 cm. Our test showed that adjacent sensors did not interfere 
with one another. The sensors were connected to an Arduino 
DUE board, which was then connected to a Lenovo 
ThinkPad x1 Carbon laptop, reading the sensor data at a 



 

 

speed of 9600 Hz. The Arduino provides readings from 0 to 
1023 with 1023 being the closest proximity. 

Pinch detection was implemented using a piezo vibration 
sensor (Minisense 100) placed inside the wrist strap (Figure 
9). The user can pinch to indicate the start of a gesture, which 
turns on the proximity sensors to capture the wrist motion. 
Upon finishing the gesture, the user can do another pinch to 
indicate the end of the gesture. This turns off the proximity 
sensors to save battery. 

Device calibration. Calibration is needed for different 
lighting conditions. The user needs to rotate the wrist in a 
circular motion similar to drawing a circle, at least once 
(more rotations only incrementally improves recognition). 
This process calibrates the sensor with the maximum range 
of motion for each of the wrist’s moving axes.  

Since the wrist’s maximum range of motion is asymmetric 
along different axes, performing the circular motion by 
banding the wrist to its limit will result in a kidney-shaped 
gesture rather than a circle. It is thus a design decision 
whether we want to keep the resulting gesture a kidney shape 
or map it to a circle, in which case, the points drawn near the 
boundary of the wrist’s range of motion will be scaled 
towards that circle, making the gesture look slightly 
stretched. We decided to go with the circle as it may be what 
people expect to see.    

Another purpose of the calibration is to normalize the sensor 
readings with the magnitude of the inferred noise in the 
environment. We implemented a simple method to allow the 
user to skip the calibration phase if the environmental noise 
is similar to a previously recorded value (e.g. ±20 of each 
sensor’s reading). This way the system can use the data from 
a previous calibration. Therefore, recalibration is only 
needed when lighting conditions change significantly. 

Tracking algorithm. We treat the data from each proximity 
sensor as a vector, the direction of which is determined by 
the location of the sensor along the watch band. The length 
of the vector is determined by the value of the sensor. The 
higher the value, the longer the vector. The direction and how 
much the wrist is bent is detected from the sensor with the 
highest reading. As the sensors were placed in close 
proximity to each other, it is almost the case that more than 
one sensor can observe very high readings. In this case, we 
take the data from three consecutive sensors, which in total 
provides the highest value among all the consecutive triplets. 
We then take the summary of the three corresponding 
vectors, the direction of which estimates the tilt direction of 
the wrist. The length of this vector will exceed the highest 
reading of the proximity sensor (e.g. 1023). We adjust its 
length based on the readings of its two direct adjacent sensors 
using linear interpolation. The end point of the resulting 
vector is the position of the wrist in 2D space (represented 
by a cursor). The hand’s neutral position is detected when the 
greatest difference among the sensor values becomes lower 
than a threshold (e.g. 50), in which case, the resulting vector 

is the sum of all 12 sensor vectors and the cursor stays near 
the middle of its active region. We found this simple method 
worked well to estimate the wrist’s joystick motion while the 
user may need to adjust the wrist movement to accommodate 
this slightly different control-to-display mode.   

WRISTWHIRL USAGE SCENARIOS 
We implemented four applications using off-the-shelf games 
and Google Maps to illustrate the potential usage scenarios 
of WristWhirl. All the applications require continuous input 
and are normally used by both hands. Gesture Shortcut 
showcases gesture recognition, and the other applications all 
take the advantage of two dimensional continuous control to 
provide a richer and more expressive interaction.  

Gesture Shortcuts 
We implemented a gesture shortcut app (Figure 10), which 
allows the user to launch favorite smartwatch applications by 
drawing gestures. This is similar to the popular gesture 
search app on smartphones [19]. However, we allow it to be 
used on the smartwatch by using one-handed interaction. In 
our current implementation, the user can launch the calendar 
app by “drawing” a triangle. Similarly, the user can use 
gestures to speed dial a number. For example, the user can 
draw an “L” to call Lisa.  

 

Figure 10. Drawing a triangle to launch a calendar app. 

Music Player 
Using discrete commands [1] to navigate a long list of songs 
can be tedious as only one item in the list can be advanced 
per action. With WristWhirl a long wrist-swipe allows the 
user to quickly skip a number of songs whereas a short wrist-
swipe advances one song at a time. We implemented a music 
player app, in which the users can use wrist extension/flexion 
to scroll a list of songs (Figure 11). The user can double tap 
the thumb and index finger to play the selected song. Notice 
that we use double tap to distinguish between selection and 
a gesture delimiter (a single pinch). This approach to 
scrolling can allow the user to navigate a list eyes-free, with 
the simple addition of audio feedback.  

 

Figure 11. Wrist extension flips a list of songs to the left 



 

 

2D Navigation 
WristWhirl allows 2D panning and zooming by using one 
hand. In our implementation of a map application, the user 
can use wrist ulnar/radial deviation to pan up or down and 
extension/flexion to pan left or right. That is when the watch 
screen is held horizontally in front of the chest, gesturing 
towards the body pans the map down, gesturing upwards 
pans the map left, and vice versa (Figure 12). The user can 
control the panning distance with the length of a gesture. 
Whirling the wrist in the counter-clockwise direction zooms 
in the map. Alternatively, whirling the wrist in the clockwise 
direction zooms out. Double tapping the thumb and index 
switches between the two modes. The user can use the same 
interaction technique to navigate a photo album or webpage. 

 

Figure 12. Panning achieved with ulnar/radial deviation (left) 
and zooming a map made possible by clockwise and counter-
clockwise whirls (right). 

Game Input 
Playing games often requires continuous input for the best 
gaming experience. In our implementation, the user can play 
Tetris by swiping the wrist left and right. Wrist extension is 
used to change orientation and wrist flexion is used to drop 
the piece (Figure 13). Notice that the user’s dominant hand 
is now free to perform simple tasks, such as picking up a 
phone, without interrupting the game. This type of input can 
also be used for other games. For example, the user can whirl 
the wrist to play Fruit Ninja.  

 

Figure 13. Playing Fruit Ninja (left) and Tetris (right)  

PRELIMINARY SYSTEM EVALUATION 
We conducted a preliminary system evaluation to verify the 
accuracy of our prototype. We were interested in knowing 
how well users employ our prototype to create gestures. 
Ideally the evaluation would be conducted using the VICON 
motion tracking system as a baseline. We found it difficult in 
practice as both system use infrared for illumination. As a 
result, the infrared light from the VICON interfere with the 
proximity sensors of our prototype. At the current stage, we 
decided to only evaluate our prototype by measuring how 
well the gestures can be drawn by using our prototype. 

Participants and Apparatus 
We recruited 12 participants between the age of 20 and 30 
(10 male). 7 of them participated in Study 1. We used the 

same setup as in Study 1, but instead of the Vicon our 
prototype tracked the wrist motion.  

Task and Procedure 
Participants were asked to perform the same set of gestures 
as in Study 1 except that they only did the study in the 
standing position with their hand being held in front of the 
chest. At the beginning of the study, participants had to 
calibrate the prototype and practice for about 20 minutes. 
The Gesture Type was counter-balanced among participants. 
The study had the same procedure as in Study 1 except that 
at the end of the study, participants had the opportunity to try 
five demo apps discussed above and provide feedback. 

Result 
Task completion time. On average, it took the participants 
560 ms to perform the directional marks and 1767 ms to 
perform the free-form gestures. A comparison of the task 
completion time between the WristWhirl and Vicon (both in 
hand-up and standing conditions) using an independent-
sampled t-test revealed a marginal difference for the 
directional marks (e.g. Vicon: 546 ms) (t958 = 1.29, p = 0.05) 
and significant difference in the free-form path gestures (e.g. 
Vicon: 1564 ms) (t958 = 6.67, p < 0.001). WristWhirl was 
slower than Vicon because our prototype was not as sensitive 
as the Vicon when the wrist was near the natural position 
(e.g. slightly tilted). Participants thus needed to slightly exert 
more tilt in our prototype for the sensor to pick up the wrist 
motion. This led to larger gestures and longer task 
completion times. Figure 5 shows a side-to-side comparison 
of the gesture completion time using the VICON motion 
tracking system (left) and our prototype device (right).  

Free-form path recognition accuracy. The result of a 12 
fold cross-validation showed that on average the $1 gesture 
recognizer was able to correctly recognize 95.4% of the free-
form paths drawn using our prototype. A t-test showed that 
the recognition accuracy for WirstWhirl is significantly 
higher than for the Vicon (92.5%; t958 = 1.89, p < 0.001).  

Accuracy of directional marks. With respect to the 
accuracy of the directional marks (e.g. straightness), the 
result showed an average standard error of regression of 
1.56, which is significantly lower than the Vicon (5.23, t958 
= -17.58, p < 0.001). The average angular error was 7.3°, 
which is also significantly lower than the Vicon (9.8°, t958 = 
-5.18, p < 0.001). Figure 1 right shows an example of a few 
gestures collected in this evaluation.  

These results suggest a comparable performance of our 
prototype as with the Vicon. We attribute this advantage to a 
mixed reasons. Learning from the first study could be one 
factor but it should be minimal as the two studies took place 
three weeks apart. The prototype also used a different 
tracking algorithm, which may also contribute to accuracy. 

Subjective feedback. Overall, participants welcome the idea 
of using the wrist gesture for one-handed interaction on 
smartwatches. While some of them felt it a bit awkward to 
use at the beginning, they all liked it after they learned how 



 

 

the device operated. A participant commented that “I think it 
is quite easy to use” (P8). As expected participants thought 
it would not be very comfortable to exert the wrist for long 
time periods but all see the value of WristWhirl as an 
alternative input method for occasional use. A participant 
said “It is very helpful when the other hand is carrying some 
very heavy bags!” (P5). Participants also enjoyed our demo 
apps and saw themselves using some of the apps in their daily 
life. For example, a participant said that “I like the map 
application very much” (P7). Another one said that the 
“Music Player is so cool and helpful!” (P1). Most of the 
participants preferred the simple directional gestures over the 
free-form paths. They all liked the Fruit Ninja app but most 
preferred playing the game on a larger touchscreen device. 
They could also envision playing Tetris with WristWhirl. 

DISCUSSION AND LIMITATIONS 
We discuss the insights gained from this work, the lessons 
we learned, the limitations of our approach, and present 
directions for future research.  

Learnability 
While many of our daily activities already involve wrist 
motion with various degrees of complexity or cognitive 
levels (e.g. low when using a spatula and high when 
controlling the swing of a tennis racquet), drawing 
touchscreen gestures using the wrist’s joystick motion is not 
something people can master without learning. This is 
mainly attributed to the inconsistency between people’s 
perceived gesture that a certain wrist motion may produce 
and the actual gesture the wrist motion produces. For 
example, a horizontal line often ended up being drawn as a 
flat “v” shape in the initial stages of training as participants 
did not realize that they were moving the wrist in a curved 
trajectory. This is also due to the lack of visual reference on 
the forearm to guide the movement of the wrist in a desired 
way. The outcome of learning, however, is noticeably 
encouraging. Participants were excited about how well they 
can draw the touchscreen gestures with the wrist. For 
example, a participant commented that “I am amazed by how 
much I can do with my wrist” (P3) and another participant 
said that “I now see myself using it to interact with a watch” 
(P11). To reduce training length one could adapt the system 
to match what users ‘think’ they are drawing (e.g. a 
horizontal line can be produced if the user is drawing a flat 
“v”). Future work will explore this direction. 

User Evaluation  
The presented user evaluation is limited in that we only 
tested a small set of common free-form paths. Future 
research will study more different paths (e.g. in curved/spiral 
shapes). While the goal of our study was to show evidence 
to support wrist whirls as a new input modality, more work 
is needed to understand the usability of this input style in 
real-world practice, in which unexpected uncertainties may 
influence the result and may possibly lead to a different 
conclusion. Finally, a longer-term study can help tease the 
memorability of wrist gestures. 

System Implementation and evaluation 
The proximity sensor is robust against visible light but it 
could be interfered with by the infra-red noise in the 
environment. In addition to natural daylight, there exists 
many infra-red light sources in office and home 
environments (e.g. security cameras). A possible way to 
avoid the inference from ambient light is to modulate the 
light signal in a certain frequency. Future research will test 
this method in a real-world environment. Additionally, our 
current implementation only works for one particular wrist 
size. We will explore alternative design options to facilitate 
a wide range of input with different wrist sizes. Pinch 
detection can also be improved. The current method may 
trigger false pinch events when the index taps a hard surface 
such as typing on a keyboard. Future work will focus on 
studying different delimiter options. Finally extra haptic 
feedback, such as Skin Drag Displays [15], can further 
facilitate eyes-free input.  

Multi-touch gestures  
Our system does not support multi-touch gestures. 
Therefore, common gestures such as two-finger scrolls 
cannot be performed using WristWhirl. Future research will 
explore potential methods that can enable multi-touch style 
continuous input using one hand. 

CONCLUSION 
One-handed interaction on smartwatches is challenging as 
existing ways of using discrete input actions, such as pinch, 
do not support 2D continuous gestural input. While other 
approaches such as tilting the watch may be used for 
continuous input, such approaches are prone to losing visual 
contact with the display when the screen is tilted away from 
the user. In this paper, we propose to use the wrist as an 
always-available joystick to perform common touchscreen 
gestures using the same-side hand wearing the watch. We 
describe a number of design considerations in designing this 
new input style. Through a user study we measure how fast 
and precise gestures can be drawn using the wrist’s joystick 
motion in two hand postures and while walking or standing 
still. We also measured the amount of screen movement 
during the course of a gesture. The results we obtained from 
observing the bio-mechanical influences of wrist whirls led 
to the development of a proof-of-concept prototype in the 
form of a wristband, with which we demonstrated a number 
of applications that can potentially benefit from one-handed 
continuous input on smartwatches. We believe that our work 
serves as important groundwork for exploring one-handed 
interaction techniques on smartwatches. 
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